1 | 钟黄亮, 王春霞, 周广林, 等. 基于纳米材料的静态吸附脱硫进展[J]. 化工进展, 2018, 37(7): 2655-2663. | 1 | ZHONG H L, WANG C X, ZHOU G L, et al. Static adsorption desulfurization based on nanomaterials[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2655-2663. | 2 | 王廷海, 李文涛, 常晓昕, 等. 催化裂化汽油清洁化技术研究开发进展[J]. 化工进展, 2019, 38(1): 196-207. | 2 | WANG T H, LI W T, CHANG X X, et al. Advances in fluid catalytic cracking naphtha cleaning technology[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 196-207. | 3 | 崔颖娜, 包明, 李长平. 深共融溶剂在燃油脱除有机硫化物中的应用[J]. 化工进展, 2019, 38(3): 1297-1307. | 3 | CUI Y N, BAO M, LI C P. Application of deep eutectic solvents in the removal of organic sulfur compounds from fuel[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1297-1307. | 4 | SALEH T A, DANMALIKI G I. Influence of acidic and basic treatments of activated carbon derived from waste rubber tires on adsorptive desulfurization of thiophenes[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 60: 460-468. | 5 | KEVIN X L, JULIA A V. Investigation of metal-exchanged mesoporous Y zeolites for the adsorptive desulfurization of liquid fuels[J]. Applied Catalysis B: Environmental, 2017, 201: 359-369. | 6 | CHANG X Q, WANG W S, LIU B S, et al. One-step strategic synthesis of x%Ni-AlSBA-15 sorbents and properties of high adsorption desulfurization for model and commercial liquid fuels[J]. Microporous and Mesoporous Materials, 2018, 268: 276-284. | 7 | LIU Y Q, PAN Y, WANG H Y, et al. Ordered mesoporous Cu-ZnO-Al2O3 adsorbents for reactive adsorption desulfurization with enhanced sulfur saturation capacity[J]. Chinese Journal of Catalysis, 2018, 39(9):1543-1551. | 8 | 刘丽丽, 台夕市, 刘美芳, 等. 构筑手性金属有机骨架的方法及其在不对称催化中的应用[J]. 化工进展, 2017, 34(4): 997-1006. | 8 | LIU L L, TAI X S, LIU M F, et al. Method of creating chiral metal-organic frameworks and its use in asymmetric catalysis[J]. Chemical Industry and Engineering Progress, 2017, 34(4): 997-1006. | 9 | MILLWARD A R, YAGHI O M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature[J]. Journal of the American Chemical Society, 2005, 127(51): 17998-17999. | 10 | LI J R, SCULLEY J, ZHOU H C. Metal-organic frameworks for separations[J]. Chemical Reviews, 2012, 112(2): 869-932. | 11 | ZHU M, LI M T, ZHAO L, et al. Metal-organic fameworks based on multi-carboxylate ligands with threefold symmetries and luminescence properties[J]. Inorganic Chemistry Communications, 2017, 79: 69-73. | 12 | CYCHOSE K A, WONG-FOY A G, MATZGER A J. Liquid phase adsorption by microporous coordination polymers: removal of organosulfur compounds[J]. Journal of the American Chemical Society, 2008, 130(22): 6838-6839. | 13 | HOWARTH A J, LIU Y Y, LI P, et al. Chemical, thermal and mechanical stabilities of metal-organic frameworks[J]. Nature Reviews Materials, 2016, 1(3): 1-15. | 14 | YAGHI O M, O’KEEFFE M, OCKWIG N W, et al. Reticular synthesis and the design of new materials[J]. Nature, 2003, 423(6941): 705-714. | 15 | EDDAOUD M, KIM J, YAGHI O M, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295(5554): 469-472. | 16 | ZENG Y P, ZHU X M, YUAN Y, et al. Molecular simulations for adsorption and separation of thiophene an benzene in Cu-BTC and IRMOF-1 metal-organic frameworks[J]. Separation and Purification Technology, 2012, 95: 145-156. | 17 | 巩睿, 周丽梅, 马娜, 等. 金属有机骨架材料MOF-5吸附苯并噻吩性能[J]. 燃料化学学报, 2013, 41(5): 608-612. | 17 | GONG R, ZHOU L M, MA N, et al. Adsorptive performance of benzothiophene using metal organic framework material MOF-5[J]. Journal of Fuel Chemistry and Technology, 2013, 41(5): 608-612. | 18 | DAI W, HU J, ZHOU L M, et al. Removal of dibenzothiophene with composite adsorbent MOF-5/Cu(Ⅰ)[J]. Energy & Fuels, 2013,27(2): 816-821. | 19 | ZHU L J, JIA X Y, BAI H, et al. Structure and adsorptive desulfurization performance of the composite material MOF-5@AC[J]. New Journal of Chemistry, 2018, 42(5): 3840-3850. | 20 | PARK K S, NI Z, COTE A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186-10191. | 21 | HAYASHI H, COTE A P, FURUKAWA H, et al. Zeolite a imidazolate frameworks[J]. Nature Materials, 2007, 6(7): 501-506. | 22 | LI K H, OLSON D H, SEIDEL J, et al. Zeolitic imidazolate frameworks for kinetic separation of propane and propene[J]. Journal of the American Chemical Society, 2009, 131(30): 10368-10369. | 23 | SHI Y W, ZHANG X W, LI W, et al. MOF-derived porous carbon for adsorptive desulfurization[J]. AIChE Journal, 2014, 60(8): 2747-2751. | 24 | 石伟芹. 金属-有机骨架材料ZIFs的制备及其吸附脱硫性能研究[D]. 北京: 北京化工大学, 2015. | 24 | SHI W Q. Synthesis of metal organic frameworks ZIFs and their properties of adsorption desulfurization[D]. Beijing: Beijing University of Chemical Technology, 2015. | 25 | KHAN N A, BHADRA B N, JHUNG S H. Heteropoly acid-loaded ionic liquid@metal-organic frameworks: effective and reusable adsorbents for the desulfurization of a liquid model fuel[J]. Chemical Engineering Journal, 2018, 334: 2215-2221. | 26 | HAN X L, HU T T, WANG Y, et al. A water-based mixing process for fabricating ZIF-8/PEG mixed matrix membranes with efficient desulfurization performance[J]. Separation and Purification Technology, 2019, 214: 61-66. | 27 | SERRE C, MILLANGE F, THOUVENOT C, et al. Very large breathing effect in the first nanoporouschromium(Ⅲ)-based solids: MIL-53 or CrIII(OH)·{O2C-C6H4-CO2}·{HO2C-C6H4-CO2H}x·H2Oy[J]. Journal of the American Chemical Society, 2002, 124(45): 13519-13526. | 28 | KHAN N A, JUN J W, JEONG J H, et al. Remarkable adsorptive performance of a metal-organic framework, vanadium-benzenedicarboxylate (MIL-47), for benzothiophene[J]. Chemical Communications, 2011, 47(7): 1306-1308. | 29 | KHAN N A, JHUNG S H. Remarkable adsorption capacity of CuCl2-loaded porous vanadium benzenedicarboxylate for benzothiophene[J]. Angewandte Chemie International Edition, 2012, 51(5): 1198-1201. | 30 | YANG F H, QI G, YANG R T, et al. Desulfurization of transportation fuels by π-complexation sorbents: Cu(I)-, Ni(Ⅱ)-, and Zn(Ⅱ)-zeolites[J]. Applied Catalysis B: Environmental, 2005, 56(1/2): 111-126. | 31 | JIA S Y, ZHANG Y F, LIU Y, et al. Adsorptive removal of dibenzothiophene from model fuels over one-pot synthesized PTA@MIL-101(Cr) hybrid material[J]. Journal of Hazardous Materials, 2013, 262: 589-597. | 32 | LI Y X, JIANG W J, TAN P, et al. What matters to the adsorptive desulfurization performance of metal-organic frameworks?[J]. The Journal of Physical Chemistry C, 2015, 119(38): 21969-21977. | 33 | LIU B J, PENG Y, CHEN Q. Adsorption of N/S-heteroaromatic compounds from fuels by functionalized MIL-101(Cr) metal-organic frameworks: the impact of surface functional groups[J]. Energy & Fuels, 2016, 30(7): 5593-5600. | 34 | KHAN N A, HASAN Z, JHUNG S H. Ionic liquid@MIL-101 prepared via the ship-in-bottle technique: remarkable adsorbents for removal of benzothiophene from liquid fuel[J]. Chemical Communications, 2016, 52(12): 2561-2564. | 35 | KHAN N A, KIM C M, JHUNG S H. Adsorptive desulfurization using Cu-Ce/metal-organic framework: improved performance based on synergy between Cu and Ce[J]. Chemical Engineering Journal, 2017, 311: 20-27. | 36 | ASLAM S, SUBHAN F, YAN Z F, et al. Dispersion of nickel nanoparticles in the cages of metal-organic framework: an efficient sorbent for adsorptive removal of thiophene[J]. Chemical Engineering Journal, 2017, 315: 469-480. | 37 | MIAO K J, HE Q X, LI Y X, et al. Fabrication of Cu()-functionalized MIL-101(Cr) for adsorptive desulfurization: low-temperature controllable conversion of Cu() via vapor-induced reduction[J]. Inorganic Chemistry, 2019, 58(16): 11085-11090. | 38 | MA S Q, ZHOU H C. A metal-organic framework with entaticmetal centers exhibiting high gas adsorption affinity[J]. Journal of the American Chemical Society, 2006, 128(36): 11734-11735. | 39 | TANG W J, GU J L, HUANG H L, et al. Metal-organic frameworks for highly efficient adsorption of dibenzothiophene from liquid fuels[J]. AIChE Journal, 2016, 62(12): 4491-4496. | 40 | 谷建蕾. 新型MOF材料的合成及其在吸附脱硫中的应用[D]. 北京: 北京化工大学, 2017. | 40 | GU J L, Synthesis of new metal-organic frameworks and their applications in adsorptive desulfurization[D]. Beijing: Beijing University of Chemical Technology, 2017. | 41 | CHUI S S Y, LO S M F, CHARMANT J P H, et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n[J]. Science, 1999, 283(5405): 1148-1150. | 42 | 王景艳. 金属有机骨架材料Cu-BTC的制备及其吸附脱硫性能研究[D]. 北京: 北京化工大学, 2014. | 42 | WANG J Y. Synthesis of metal-organic frameworks Cu-BTC and their properties of adsorption desulfurization[D]. Beijing: Beijing University of Chemical Technology, 2014. | 43 | QIN L B, ZHOU Y S, LI D Q, et al. Highly dispersed HKUST-1 on milimeter-sized mesoporous γ-Al2O3 beads for highly effective adsorptive desulfurization[J]. Industrial & Engineering Chemistry Research, 2016, 55(27): 7249-7258. | 44 | CHEN M Y, DING Y, LIU Y C, et al. Adsorptive desulfurization of thiophene from the model fuels onto graphite oxide/metal-organic framework composites[J]. Petroleum Science and Technology, 2016, 36(2): 141-147. | 45 | YANG K, YAN Y, CHEN W, et al. Nut-like MOF/hydroxylated graphene hybrid materials for adsorptive desulfurization of thiophene[J]. Royal Society of Chemistry Advances. 2018, 8(42): 23671-23678. | 46 | YU L, LIU Q, DAI W, et al. Efficient thiophene capture with a hydrophobic Cu-BTC-(n)Br adsorbent in the presence of moisture[J]. Microporous and Mesoporous Materials, 2018, 266: 7-13. | 47 | RADWAN D R, MATLOOB A, MIKHAIL S, et al. Metal organic framework-graphene nano-composites for high adsorption removal of DBT as hazard material in liquid fuel[J]. Journal of Hazardous Materials, 2019, 373: 447-458. | 48 | CAO Y N, LU S J, CUI W L, et al. Adsorption desulfurization via π-complexation with Ag+-exchanged anionic metal-organic framework[J]. Industrial & Engineering Chemistry Research, 2019, 58(16): 6704-6711. | 49 | CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851. | 50 | 韩易潼, 刘民, 李克艳, 等. 高稳定性金属有机骨架UiO-66的合成与应用[J]. 应用化学, 2016, 33(4): 367-378. | 50 | HAN Y T, LIU M, LI K Y, et al. Preparation and application of high stability metal-organic framework UiO-66[J]. Chinese Journal of Applied Chemistry, 2016, 33(4): 367-378. | 51 | ZHANG X F, WANG Z G, FENG Y, et al. Adsorptive desulfurization from the model fuels by functionalized UiO-66(Zr)[J]. Fuel, 2018, 234: 256-262. | 52 | NIIDU A. Phenols to pores to adsorption a potential route towards new methods for extracting value from shale oil side stream[J]. Oil Shale,2019,36(2): 128-141. | 53 | SONG Y M, YANG D H, YU S N, et al. Hybrid membranes with Cu(Ⅱ) loaded metal organic frameworks for enhanced desulfurization performance[J]. Separation and Purification Technology, 2019, 210: 258-267. | 54 | LIU N W, SHI L, MENG X. Tuning the adsorption properties of UiO-66 via acetic acid modulation[J]. Journal of Chemical Sciences, 2019, 131(6): 1-7. | 55 | VOORDE B V, HEZINOVA M, LANNOEYE J, et al. Adsorptive desulfurization with CPO-27/MOF-74: an experimental and computational investigation[J]. Physical Chemistry Chemical Physics, 2015, 17(16): 10759-10766. | 56 | ZHAO Z P, QIN L B, ZHOU Y S, et al. Confinement of microporous MOF-74(Ni) within mesoporous γ-Al2O3 beads for excellent ultra-deep and selective adsorptive desulfurization performance[J]. Fuel Processing Technology, 2018, 176: 276-282. | 57 | DAI W, TIAN N, LIU C M, et al. (Zn, Ni, Cu)-BTC functionalized with phosphotungstic acid for adsorptive desulfurization in the presence of benzene and ketone[J]. Energy & Fuels, 2017, 31(12): 13502-13508. | 58 | ULLAH L, ZHAO G Y, HEDIN N, et al. Highly efficient adsorption of benzothiophene from model fuel on a metal-organic framework modified with dodeca-tungstophosphoricacid[J]. Chemical Engineering Journal, 2019, 362: 30-40. | 59 | 何乔, 王亭亭,马娜, 等. 噻吩在双金属有机多孔材料Ni-Cu/BTC上吸附性能的研究[J]. 中国环境科学, 2015, 35(7): 1983-1989. | 59 | HE Q, WANG T T, MA N, et al. Adsorptive performance of thiophene by bimetallic organic porous material Ni-Cu/BTC[J]. China Environmental Science, 2015, 35(7): 1983-1989. | 60 | BAN S, LONG K Y, XIE J, et al. Thiophene separation with silver-doped Cu-BTC metal-organic framework for deep desulfurization[J]. Industrial & Engineering Chemistry Research, 2018, 57(8): 2956-2966. | 61 | VOORDE B V, BOULHOUT M, VEIMOORTELE F, et al. N/S-heterocyclic contaminant removal from fuels by the mesoporous metal-organic framework MIL-100: the role of the metal ion[J]. Journal of the American Chemical Society, 2013, 135(26): 9849-9856. | 62 | 张彪, 李晓娟, 李明明, 等. 油品脱硫吸附剂研发现状及发展趋势[J]. 现代化工, 2018, 38(3): 57-61. | 62 | ZHANG B, LI X J, LI M M, et al. Research status and development trend about adsorbents for deep desulfurization of oil products[J]. Modern Chemical Industry, 2018, 38(3): 57-61. | 63 | PERALTA D, CHAPLAIS G, PIRNGRUBER G D, et al. Metal-organic framework materials for desulfurization by adsorption[J]. 2012, 26(8): 4953-4960. | 64 | HASAN Z, TONG M M, JUNG B K, et al. Adsorption of pyridine over amino-functionalized metal-organic frameworks: attraction via hydrogen bonding versus base-base repulsion[J]. The Journal of Physical Chemistry C, 2014, 118(36): 21049-21056. | 65 | WU L M, XIAO J, WU Y, et al. A combined experimental/computational study on the adsorption of organosulfur compounds over metal-organic frameworks from fuels[J]. Langmuir, 2014, 30(4): 1080-1088. | 66 | ZUHRA Z, ZHAO Z P, QIN L B, et al. In situ formation of a multiporous MOF(Al)@γ-AlOOH composite material: a versatile adsorbent for both N- and S-heterocyclic fuel contaminants with high selectivity[J]. Chemical Engineering Journal, 2019, 360: 1623-1632. | 67 | KAMPOURAKI Z C, GIANNAKOUDAKIS D A, NAIR G, et al. Metal-organic frameworks as desulfurization adsorbents of DBT and 4,6-DMDBT from fuels[J]. Molecules, 2019, 24(4525): 1-23. | 68 | PISCOPO C G, POLYZOIDIS A, SCHWARZER M, et al. Stability of UiO-66 under acidic treatment: opportunities and limitations for postsynthetic modifications[J]. Microporous and Mesoporous Materials, 2015, 208: 30-35. | 69 | HOWARTH A J, LIU Y Y, LI P, et al. Chemical, thermal and mechanical stabilities of metal-organic frameworks[J]. Nature Reviews Materials, 2016, 1(3): 1-15. | 70 | Lü X L, WANG K C, WANG B, et al. A base-resistant metalloporphyrin MOF for C—H bond halogenation[J]. Journal of the American Chemical Society, 2017, 139: 211-217. | 71 | WANG B, Lü X L, FENG D W, et al. Highly stable Zr()-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water[J]. Journal of the American Chemical Society, 2016, 138: 6204-6216. | 72 | YANG F, XU G, DOU Y B, et al. A flexible metal-organic framework with a high density of sulfonic acid sites for proton conduction[J]. Nature Energy, 2017, 2(11): 877-883. |
|