1 | JOSPEH A, KABBARA M, GROULX D, et al. Characterization and real-time testing of phase-change materials for solar thermal energy storage[J]. International Journal of Energy Research, 2016, 40(1): 61-70. | 2 | LING Deli, MO Genmao, JIAO Qingtai, et al. Research on solar heating system with phase change thermal energy Storage[J]. Energy Procedia, 2016, 91: 415-420. | 3 | SU Weiguang, DARKWA J, KOKOGIANNAKIS G. Development of microencapsulated phase change material for solar thermal energy storage[J]. Applied Thermal Engineering, 2016, 112: 1205-1212. | 4 | ZHANG Peng, MA Fei, XIAO Xin. Thermal energy storage and retrieval characteristics of a molten-salt latent heat thermal energy storage system[J]. Applied Energy, 2016, 173: 255-271. | 5 | NOMURA T, OKINAKA N, AKIYAMA T. Waste heat transportation system, using phase change material (PCM) from steelworks to chemical plant[J]. Resources, Conservation and Recycling, 2010, 54(11): 1000-1006. | 6 | MERLIN K, SOTO J, DELAUNAY D, et al. Industrial waste heat recovery using an enhanced conductivity latent heat thermal energy storage[J]. Applied Energy, 2016, 183: 491-503. | 7 | AKEIBER H, NEJAT P, MAJID M Z A, et al. A review on phase change material (PCM) for sustainable passive cooling in building envelopes[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 1470-1497. | 8 | JIN Xing, HU Huoyan, SHI Xing, et al. An improved heat transfer model for building phase change material wallboard[J]. Journal of Thermal Analysis and Calorimetry, 2018, 134: 1757-1763. | 9 | ZHANG Yin, ZHANG Mingshan. Thermal performance optimization of shape stabilized phase change material used in building envelopes[J]. Key Engineering Materials, 2017, 744: 201-206. | 10 | GASIA J, MIRó L, CABEZA L F. Review on system and materials requirements for high temperature thermal energy storage. Part 1: General requirements[J]. Renewable and Sustainable Energy Reviews, 2017, 75: 1320-1338. | 11 | ZHOU Dan, EAMES P. A study of a eutectic salt of lithium nitrate and sodium chloride (87%–13%) for latent heat storage[J]. Solar Energy Materials and Solar Cells, 2017, 167: 157-161. | 12 | NKHONJERA L, BELLO-OCHENDE T, JOHN G, et al. A review of thermal energy storage designs, heat storage materials and cooking performance of solar cookers with heat storage[J]. Renewable and Sustainable Energy Reviews, 2016, 75: 157-167. | 13 | LIU Junwan, WANG Qianhao, LING Ziye, et al. A novel process for preparing molten salt/expanded graphite composite phase change blocks with good uniformity and small volume expansion[J]. Solar Energy Materials and Solar Cells, 2017, 169: 280-286. | 14 | WILLIAMS D F, TOTH L M, CLANO K T. Assessment of candidate molten salt coolants for the advanced high-temperature reactor [R]. ORNL/TM-2006/12, USA, 2006. | 15 | TAO Yubing, HE Yaling. A review of phase change material and performance enhancement method for latent heat storage system[J]. Renewable and Sustainable Energy Reviews, 2018, 93: 245-259. | 16 | XIAO Xin, ZHANG Peng, LI Ming. Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage[J]. International Journal of Thermal Sciences, 2014, 81: 94-105. | 17 | XU Yang, REN Qinlong, ZHENG Zhangjing, et al. Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media[J]. Applied Energy, 2017, 193: 84-95. | 18 | WANG Jifen, XIE Huaqing, XIN Zhong, et al. Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers[J]. Solar Energy, 2010, 84(2): 339-344. | 19 | TAO Yubing, HE Yaling, QU Zhiguo. Numerical study on performance of molten salt phase change thermal energy storage system with enhanced tubes[J]. Solar Energy, 2012, 86(5): 1155-1163. | 20 | ZAUNER C, HENGSTBERGER F, ETZEL M, et al. Experimental characterization and simulation of a fin-tube latent heat storage using high density polyethylene as PCM[J]. Applied Energy, 2016, 179: 237-246. | 21 | ZHAO Dongliang, TAN Gang. Numerical analysis of a shell-and-tube latent heat storage unit with fins for air-conditioning application[J]. Applied Energy, 2015, 138: 381-392. | 22 | FANG Ming, CHEN Guangming. Effects of different multiple PCMs on the performance of a latent thermal energy storage system[J]. Applied Thermal Engineering, 2007, 27(5/6): 994-1000. | 23 | MOSAFFA A H, GAROUSI FARSHI L, INFANTE FERREIRA C A, et al. Energy and exergy evaluation of a multiple-PCM thermal storage unit for free cooling applications[J]. Renewable Energy, 2014, 68: 452-458. | 24 | ALDOSS T K, RAHMAN M M. Comparison between the single-PCM and multi-PCM thermal energy storage design[J]. Energy Conversion and Management, 2014, 83: 79-87. | 25 | AL-ABIDI A A, MAT S, SOPIAN K, et al. Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins[J]. International Journal of Heat & Mass Transfer, 2013, 61(1): 684-695. | 26 | AL-ABIDI A A, MAT S, SOPIAN K, et al. Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers[J]. Applied Thermal Engineering, 2013, 53(1): 147-156. | 27 | ZHAO Changying, WU Zhigen. Heat transfer enhancement of high temperature thermal energy storage using metal foams and expanded graphite[J]. Solar Energy Materials & Solar Cells, 2011, 95(2): 636-643. | 28 | 吴志根, 赵长颖, 顾清之. 多孔介质在高温相变蓄热中的强化换热[J]. 化工学报, 2012, 63(S1): 119-122. | 28 | WU Zhigen, ZHAO Changying, GU Qingzhi. Heat transfer enhancement of high temperature thermal energy storage using porous materials[J]. CIESC Journal, 2012, 63(S1): 119-122. | 29 | 李文强, 屈治国, 陶文铨. 金属泡沫内固一液相变数值模拟研究[J]. 工程热物理学报, 2013, 34(1): 141-144. | 29 | LI Wenqiang, QU Zhiguo, TAO Wenquan. Numerical study of solid-liquid phase change in metallic foam[J]. Journal of Engineering Thermophysics, 2013, 34(1): 141-144. | 30 | 杨佳霖, 杜小泽, 杨立军, 等. 填充泡沫金属的熔盐相变蓄热过程模拟[J]. 工程热物理学报, 2014(11): 2256-2260. | 30 | YANG Jialin, DU Xiaoze, YANG Lijun, et al. Numerical analysis of molten salt phase-change process in metal foams[J]. Journal of Engineering Thermophysics, 2014(11): 2256-2260. |
|