化工进展 ›› 2020, Vol. 39 ›› Issue (7): 2534-2547.DOI: 10.16085/j.issn.1000-6613.2019-1466

• 化工过程与装备 • 上一篇    下一篇

NSGA-Ⅱ和NSGA-Ⅲ应用于换热网络多目标优化的对比

蒋宁(), 范伟, 谢小东, 郭风元, 李恩腾, 赵世超   

  1. 浙江工业大学机械工程学院,浙江 杭州 310023
  • 出版日期:2020-07-05 发布日期:2020-07-10
  • 通讯作者: 蒋宁
  • 作者简介:蒋宁(1977—),副教授,硕士生导师,研究方向为过程能量集成。E-mail:jiangning@zjut.edu.cn
  • 基金资助:
    浙江省自然科学基金(LY18E060010);国家自然科学基金(51206147)

Comparative study of NSGA-Ⅱ and NSGA-Ⅲ on multi-objective optimization of heat exchanger network

Ning JIANG(), Wei FAN, Xiaodong XIE, Fengyuan GUO, Enteng LI, Shichao ZHAO   

  1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, Zhejiang, China
  • Online:2020-07-05 Published:2020-07-10
  • Contact: Ning JIANG

摘要:

针对换热网络多目标优化问题,采用目前应用较广泛的两种多目标遗传算法,即NSGA-Ⅱ和NSGA-Ⅲ,对两种算法的性能进行对比研究。案例研究结果表明,NSGA-Ⅱ算法比NSGA-Ⅲ算法运行效率更高,NSGA-Ⅲ的运行时间是NSGA-Ⅱ的2倍以上;NSGA-Ⅱ算法的应用并不严格地受限于3个目标的最大目标数量,NSGA-Ⅱ在求解大于3个目标的多目标优化问题时也可能具有良好的性能,目标数量并非选择NSGA-Ⅱ和NSGA-Ⅲ算法的严格标准。对10×5换热网络案例进行4个相关目标改造优化时,从换热网络的单一性能指标来看,NSGA-Ⅱ算法更容易获得各目标的极值。从最小年度总费用的评价指标来看,两种算法的最优方案效果相近。对7×3换热网络案例进行6个目标的优化时,NSGA-Ⅲ算法得到各目标的极值较优。从最小年度总费用的评价指标来看,NSGA-Ⅲ算法获得的投资费用和年度总费用更小。对于目标函数数量不超过3个,或者3个以上具有一定相关性的多目标优化问题,推荐优先使用NSGA-Ⅱ算法实现快速寻优;而NSGA-Ⅲ算法由于其基于参考点的选择机制,运行效率较慢,更适合用于收敛困难的高维多目标优化问题。

关键词: NSGA-Ⅱ, NSGA-Ⅲ, 换热网络, 多个目标, 优化

Abstract:

For the widely used multi-objective genetic algorithms, NSGA-Ⅱ and NSGA-Ⅲ, this paper combines the specific heat exchanger network retrofit problems to compare the performance of the two algorithms. The case study results showed that the NSGA-Ⅱ is more efficient than the NSGA-Ⅲ, especially under the condition of large population, and the running time of NSGA-Ⅲ is above 2 times that of NSGA-Ⅱ. The application of NSGA-Ⅱ algorithm is not strictly limited by the maximum target number of three. NSGA-Ⅱ may also have good performance when solving multi-objective optimization problems with more than 3 targets. The number of targets is not the strict standard of selecting NSGA-Ⅱ or NSGA-Ⅲ algorithm. The NSGA-Ⅱ algorithm is more likely to obtain the extreme value of each target from the single performance index of the heat exchanger network in the 10H×5C heat exchanger network case including four related targets. From the index of the minimum total annual cost, the optimal schemes of the two algorithms are similar. In the 7H×3C heat exchanger network optimization including six targets, the NSGA-Ⅲ algorithm obtains better target extreme values. From the index of the minimum annual cost, the capital cost and annual total cost by the NSGA-Ⅲ algorithm are smaller. Therefore, for multi-objective optimization problems with no more than 3 objective functions or more than 3 related objective functions, it is recommended to use the NSGA-Ⅱ algorithm to achieve fast optimization. The NSGA-Ⅲ algorithm is based on the reference point-based selection mechanism, so its calculation efficiency is slower, and it is more suitable for high-dimensional multi-objective optimization problems with difficulty in convergence.

Key words: NSGA-Ⅱ, NSGA-Ⅲ, heat exchanger network, multi-objective, optimization

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn