1 | 吕俊峰, 肖武, 王开锋, 等. 多目标综合优化算法研究进展[J]. 化工进展, 2016, 35(2): 352-357. | 1 | Junfeng Lü, XIAO Wu, WANG Kaifeng, et al. Research progress on optimization algorithms in multi-objective synthesis of heat exchanger networks[J]. Chemical Industry and Engineering Progress, 2016, 35(2): 352-357. | 2 | JIN Zunlong, CHEN Xiaotang, WANG Yongqing, et al. Heat exchanger network synthesis based on environmental impact minimization[J]. Clean Technologies and Environmental Policy, 2014, 16(1): 183-187. | 3 | FRANCESCONI J A, OLIVA D G, AGUIRRE P A. Flexible heat exchanger network design of an ethanol processor for hydrogen production. A model-based multi-objective optimization approach[J]. International Journal of Hydrogen Energy, 2017, 42(5): 2736-2747. | 4 | LAUKKANEN T, TVEIT T M, OJALEHTO V, et al. An interactive multi-objective approach to heat exchanger network synthesis[J]. Computers & chemical engineering, 2010, 34(6): 943-952. | 5 | SREEPATHI B K, RANGAIAH G P. Review of heat exchanger network retrofitting methodologies and their applications[J]. Industrial & engineering chemistry research, 2014, 53(28): 11205-11220. | 6 | DEB K. Multi-objective optimization using evolutionary algorithms [M]. John Wiley & Sons, 2001. | 7 | AGARWAL A, GUPTA S K. Multiobjective optimal design of heat exchanger networks using new adaptations of the elitist nondominated sorting genetic algorithm, NSGA-Ⅱ[J]. Industrial & Engineering Chemistry Research, 2008, 47(10): 3489-3501. | 8 | SREEPATHI B K, RANGAIAH G P. Retrofitting of heat exchanger networks involving streams with variable heat capacity: application of single and multi-objective optimization[J]. Applied Thermal Engineering, 2015, 75: 677-684. | 9 | Junfeng Lü, JIANG Xiaobin, HE Gaohong, et al. Economic and system reliability optimization of heat exchanger networks using NSGA-Ⅱ algorithm[J]. Applied Thermal Engineering, 2017, 124: 716-724. | 10 | 林露. 基于非支配排序遗传算法的换热网络多目标优化[D]. 杭州: 浙江工业大学, 2013. | 10 | LIN Lu. Multiobjective optimization of heat exchanger network based on nondominated sorting genetic algorithm[D]. Hangzhou: Zhejiang University of Technology, 2013. | 11 | DEB K, JAIN H. An evolutionary many-objective optimization using reference-point-based nondominated sorting approach. Part I: Solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(4): 577-601. | 12 | WANG Yihan, CHEN Chen, TAO Yuan, et al. A many-objective optimization of industrial environmental management using NSGA-Ⅲ: a case of China’s iron and steel industry[J]. Applied Energy, 2019, 242: 46-56. | 13 | ISHIBUCHI H, IMADA R, SETOGUCHI Y, et al. Performance comparison of NSGA-Ⅱ and NSGA-Ⅲ on various many-objective test problems[C]//IEEE Congress on Evolutionary Computation (CEC). IEEE, 2016: 3045-3052. | 14 | CIRO G C, DUGARDIN F, YALAOUI F, et al. A NSGA-Ⅱ and NSGA-Ⅲ comparison for solving an open shop scheduling problem with resource constraints[J]. IFAC-Papers on Line, 2016, 49(12): 1272-1277. | 15 | 霍兆义, 尹洪超, 赵亮, 等. 国内换热网络综合方法研究进展与展望[J]. 化工进展, 2012, 31(4): 726-731. | 15 | HUO Zhaoyi, YIN Hongchao, ZHAO Liang, et al. Process and prospect for the methodology of heat exchanger network synthesis in China[J]. Chemical Industry and Engineering Progress, 2012, 31(4): 726-731. | 16 | DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multi-objective genetic: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary computation, 2002, 6(2): 182-197. | 17 | ZITZLER E, LAUMANNS M, THIELE L. SPEA2: Improving the strength Pareto evolutionary algorithm[J]. TIK-report, 2001, 103. | 18 | DAS I, DENNIS J E. Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems[J]. SIAM Journal on Optimization, 1998, 8(3): 631-657. | 19 | JAIN H, DEB K. An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach.Part Ⅱ: Handling constraints and extending to an adaptive approach[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(4): 602-622. | 20 | YEE T F, GROSSMANN I E, KRAVANJA Z. Simultaneous optimization models for heat integration—Ⅲ. Process and heat exchanger network optimization[J]. Computers & Chemical Engineering, 1990, 14(11): 1185-1200. | 21 | 蒋宁, 韩文巧, 郭风元, 等. 基于实际热负荷分布的换热网络优化改造[J]. 化工进展, 2018, 37(8): 2935-2941. | 21 | JIANG Ning, HAN Wenqiao, GUO Fengyuan, et al. Optimization of heat exchanger network retrofit based on actual heat load distribution[J]. Chemical Industry and Engineering Progress, 2018, 37(8): 2935-2941. | 22 | GUINéE J. Handbook on life cycle assessment operational guide to the ISO standards[J]. The International Journal of Life Cycle Assessment, 2002, 7(5): 311-313. | 23 | NGUYEN D Q, BARBARO A, VIPANURAT N, et al. All-at-once and step-wise detailed retrofit of heat exchanger networks using an MILP model[J]. Industrial & Engineering Chemistry Research, 2010, 49(13): 6080-6103. | 24 | SREEPATHI B K, RANGAIAH G P. Heat exchanger network retrofitting: alternative solutions via multi-objective optimization for industrial implementation[M]//Chemical Process Retrofitting and Revamping: Techniques and Applications, Wiley, 2016: 193-222. | 25 | AHMAD S, PATELA E. Supertarget: Applications software for oil refinery retrofit[R]. American Institute of Chemical Engineers, New York, NY, 1987. |
|