1 | HUH K M, OOYA T, LEE W K, et al. Supramolecular-structured hydrogels showing a reversible phase transition by inclusion complexation between poly(ethylene glycol) grafted dextran and α-cyclodextrin[J]. Macromolecules, 2001, 34(25): 8657-8662. | 2 | COLLIN J P, HEITZV, BONNET S, et al. Transition metal complexed catenanes and rotaxanes in motion: towards molecular machines[J]. ChemInform, 2005, 8(12): 1063-1074. | 3 | LEHN J M. Supramolecular chemistry: receptors, catalysts, and carriers[J]. Science, 1985, 227(4689): 849-856. | 4 | JIMENEZ-MOLERO M C, DIETRICH-BUCHECKER C, SAUVAGE J P. Chemically induced contraction and stretching of a linear rotaxane dimer[J]. Chemistry, 2002, 8(6): 1456-1466. | 5 | AMABILINO D B, STODDART J F. Interlocked and intertwined structures and superstructures[J]. Chemical Reviews, 1995, 95(8): 2725-2828. | 6 | CHANG J C, TSENG S H, LAI C C, et al. Mechanically interlocked daisy-chain-like structures as multidimensional molecular muscles[J]. Nature Chemistry, 2016, 9: 128-134. | 7 | ZHANG Q, RAO S J, XIE T, et al. Muscle-like artificial molecular actuators for nanoparticles[J]. Chem., 2018, 4(11): 2670-2684. | 8 | KOUMURA N, ZIJLSTRA R W J, DELDEN R A V, et al. Light-driven monodirectional molecular rotor[J]. Nature, 1999, 401(6749): 152-155. | 9 | KUDERNAC T, RUANGSUPAICHAT N, PARSCHAU M, et al. Electrically driven directional motion of a four-wheeled molecule on a metal surface[J]. Nature, 2011, 479: 208-211. | 10 | LI X J, WANG Y R, WU R Q, et al. Slide-ring shape memory polymers with movable cross-links[J]. Reactive and Functional Polymers, 2017, 119: 26-36. | 11 | MAYUMI K, ITO K. Structure and dynamics of polyrotaxane and slide-ring materials[J]. Polymer, 2010, 51(4): 959-967. | 12 | 芦艳, 和树立, 王琦旗,等. PVDF膜改性方法研究进展[J]. 化学通报, 2014, 77(11): 1054-1057. | 12 | LU Y, HE S L, WANG Q Q, et al. Research progress in PVDF membrane modification method[J]. Chemistry, 2014, 77(11): 1054-1057. | 13 | CHEW N, ZHANG Y J, GOH K, et al. Hierarchically structured janus membrane surfaces for enhanced membrane distillation performance[J]. ACS Applied Materials & Interfaces, 2019, 11(28): 25524-25534. | 14 | FU W Y, ZHANG W. Chemical aging and impacts on hydrophilic and hydrophobic polyether sulfone (PES) membrane filtration performances[J]. Polymer Degradation and Stability, 2019, 168: 108960. | 15 | ZINADINI S, ZINATIZADEH A A, RAHIMI M, et al. Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates[J]. Journal of Membrane Science, 2014, 453(3): 292–301. | 16 | HE M B,LI T,HU M L, et al. Performance improvement for thin-film composite nanofiltration membranes prepared on PSf/PSf-g-PEG blended substrates[J]. Separation and Purification Technology, 2020, 230(2): 115855. | 17 | MA X H, YANG Z, YAO Z K, et al. Tuning roughness features of thin film composite polyamide membranes for simultaneously enhanced permeability, selectivity and anti-fouling performance[J]. Journal of Colloid and Interface Science, 2019, 540(22): 382-388. | 18 | SHAO F F, DONG L F, DONG H Z, et al. Graphene oxide modified polyamide reverse osmosis membranes with enhanced chlorine resistance[J]. Journal of Membrane Science, 2017, 525: 9-17. | 19 | JUNG H R, JU D H, LEE W J, et al. Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes[J]. Electrochimica Acta, 2009, 54(13): 3630-3637. | 20 | SHEN S S, CHEN H, WANG R H, et al. Preparation of antifouling cellulose acetate membranes with good hydrophilic and oleophobic surface properties[J]. Materials Letters, 2019, 252(1): 1-4. | 21 | WANG W,LIN J,CHENG J, et al. Dual super-amphiphilic modified cellulose acetate nanofiber membranes with highly efficient oil/water separation and excellent antifouling properties[J]. Journal of Hazardous Materials, 2020, 385(5): 121582. | 22 | ZHAO J Q, HAN H R, WANG Q, et al. Hydrophilic and anti-fouling PVDF blend ultrafiltration membranes using polyacryloylmorpholine-based triblock copolymers as amphiphilic modifiers[J]. Reactive and Functional Polymers, 2019, 139: 92-101. | 23 | BEHBOUDI A, JAFARZADEH Y, YEGANI R. Polyvinyl chloride/ polycarbonate blend ultrafiltration membranes for water treatment[J]. Journal of Membrane Science, 2017, 534(15): 18-24. | 24 | MA N, CAO J J, LI H Y, et al. Surface grafting of zwitterionic and PEGylated cross-linked polymers toward PVDF membranes with ultralow protein adsorption[J]. Polymer, 2019, 167(22): 1-12. | 25 | YANG Y F, LI Y, LI Q L, et al. Surface hydrophilization of microporous polypropylene membrane by grafting zwitterionic polymer for anti-biofouling[J]. Journal of Membrane Science, 2010, 362(1/2): 255-264. | 26 | RANA D, MATSUURA T. Surface modifications for antifouling membranes[J]. Chemical Reviews, 2010, 110(4): 2448-2471. | 27 | MCCLOSKEY B D, JU H, FREEMAN B D. Composite membranes based on a selective chitosan-poly (ethylene glycol) hybrid layer: synthesis, characterization, and performance in oil-water purification[J]. Industrial & Engineering Chemistry Research, 2010, 49(1): 366-373. | 28 | SULEMAN M S, LAU K K, YEONG Y F. Enhanced gas separation performance of PSF membrane after modification to PSF/PDMS composite membrane in CO2/CH4 separation[J]. Journal of Applied Polymer Science, 2018, 135(1): 45650. | 29 | 姜忠义, 陈文娟, 苏延磊. 抗污染膜表面构建的研究进展[J]. 膜科学与技术, 2011, 31(3): 64-68. | 29 | JIANG Z Y, CHEN W J, SU Y L. Research progress in surface construction of antifouling membranes[J]. Membrane Science and Technology, 2011, 31(3): 64-68. | 30 | LEE J, CHAE H R, WON Y J, et al. Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment[J]. Journal of Membrane Science, 2013, 448(15): 223-230. | 31 | AYYARU S, AHN Y. Application of sulfonic acid group functionalized graphene oxide to improve hydrophilicity, permeability, and antifouling of PVDF nanocomposite ultrafiltration membranes[J]. Journal of Membrane Science, 2016, 525(1): 210-219. | 32 | BANO S, MAHMOOD A, KIM S, et al. Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties[J]. Journal of Materials Chemistry A, 2015, 3(5): 2065-2071. | 33 | LIU Y, YU L, CHEN Y, et al. Construction and DNA condensation of cyclodextrin-based polypseudorotaxanes with anthryl grafts[J]. Journal of the American Chemical Society, 2007, 129(35): 10656-10657. | 34 | SCHMIDT B V K J, HETZER M, RITTER H, et al. Complex macromolecular architecture design via cyclodextrin host/guest complexes[J]. Progress in Polymer Science, 2014, 39(1): 235-249. | 35 | MURAKAMI H, BABA R, FUKUSHIMA M, et al. Synthesis and characterization of polyurethanes crosslinked by polyrotaxanes consisting of half-methylated cyclodextrins and PEGs with different chain lengths[J]. Polymer, 2015, 56: 368-374. | 36 | MENA-HERNANDO S, PéREZ E M. Mechanically interlocked materials. Rotaxanes and catenanes beyond the small molecule[J]. Chemical Society Reviews, 2019, 48(19): 5016-5032. | 37 | MINATO K, MAYUMI K, MAEDA R, et al. Mechanical properties of supramolecular elastomers prepared from polymer-grafted polyrotaxane[J]. Polymer, 2017, 128(16): 386-391. | 38 | KATSUNO C, KONDA A, URAYAMA K, et al. Pressure-responsive polymer membranes of slide-ring gels with movable cross-links[J]. Advanced Materials, 2013, 25(33): 4636-4640. | 39 | WANG F, HAN C Y, HE C L, et al. Self-sorting organization of two heteroditopic monomers to supramolecular alternating copolymers[J]. Journal of the American Chemical Society, 2008, 130(34): 11254-11255. | 40 | OKADA M, TAKASHIMA Y, HARADA A. One-pot synthesis of γ-cyclodextrin polyrotaxane: trap of γ-cyclodextrin by photodimerization of anthracene-capped pseudo-polyrotaxane[J]. Macromolecules, 2004, 37(19): 7075-7077. | 41 | HU S Z, CHEN C F. Triptycene-derived oxacalixarenes as new wheels for the synthesis of [2]rotaxanes: acid-base- and metal-ion-switchable complexation processes[J]. Chemistry-A European Journal, 2011, 17(19): 5424-5431. | 42 | HWANG I, BAEK K, JUNG M, et al. Noncovalent immobilization of proteins on a solid surface by cucurbit [7] uril-ferrocenemethylammonium pair, a potential replacement of biotin-avidin pair[J]. Journal of the American Chemical Society, 2007, 129(14): 4170-4171. | 43 | BONNET S, COLLIN J P, KOIZUMI M, et al. Transition-metal-complexed molecular machine prototypes[J]. Advanced Materials, 2006, 18(10): 1239-1250. | 44 | WU J, LEUNG K C, BENíTEZ D, et al. An acid-base-controllable [c2] daisy chain[J]. Angewandte Chemie: International Edition, 2010, 120(39): 7580-7584. | 45 | COUTROT F, ROMUALD C, BUSSERON E. A new pH-switchable dimannosyl [c2] daisy chain molecular machine[J]. Organic Letters, 2008, 10(17): 3741-3744. | 46 | SERRELI V, LEE C, KAY E R, et al. A molecular information ratchet[J]. Nature, 2007, 445(7127): 523-527. | 47 | 刘慧君, 齐彩霞, 邓珊霞. 基于环糊精(准)聚轮烷的研究进展[J]. 南华大学学报(自然科学版), 2017, 31(3): 92-100. | 47 | LIU H J,QI C X,DENG S X. Research advance of polypesudorotaxanes based-cyclodextrins[J]. Journal of University of South China (Science and Technology), 2017, 31(3): 92-100. | 48 | 吴佳燕. 点击化学法合成环糊精聚轮烷及滑移超分子聚合物刷[D]. 上海: 上海交通大学, 2010. | 48 | WU J Y. Synthesis of cyclodextrin polyrotaxnes and sliding supramolecular polymer brushed via click chemistry[D]. Shanghai: Shanghai Jiao Tong University, 2010. | 49 | ZHAO T J, BECKHAM H W. Direct synthesis of cyclodextrin-rotaxanated poly (ethylene glycol)s and their self-diffusion behavior in dilute solution[J]. Macromolecules, 2003, 36(26): 9859-9865. | 50 | OOYA T, ITO A, YUI N. Preparation of α-cyclodextrin-terminated polyrotaxane consisting of β-cyclodextrins and pluronic as a building block of a biodegradable network[J]. Macromolecular Bioscience, 2005, 5(5): 379-383. | 51 | HE H K, ZHANG Y, GAO C, et al. ‘Clicked’ magnetic nanohybrids with a soft polymer interlayer[J]. Chemical Comunications, 2009, 13(13): 1655-1657. | 52 | ZHANG Y, HE H K, GAO C. Clickable macroinitiator strategy to build amphiphilic polymer brushes on carbon nanotubes[J]. Macromolecules, 2008, 41(24): 9581-9594. | 53 | GUBBENS J, RUIJTER E, FAYS L E, et al. Photocrosslinking and click chemistry enable the specific detection of proteins interacting with phospholipids at the membrane interface[J]. Chemistry & Biology, 2009, 16(1): 3-14. | 54 | KE H, YANG L P, XIE M, et al. Shear-induced assembly of a transient yet highly stretchable hydrogel based on pseudopolyrotaxanes[J]. Nature Chemistry, 2019, 11: 470-477. | 55 | LIU L F, XIAO L, YANG F L. Terylene membrane modification with polyrotaxanes, TiO2 and polyvinyl alcohol for better antifouling and adsorption property[J]. Journal of Membrane Science, 2009, 333: 110-117. | 56 | GE A, QIAO L M, SEO J H, et al. Surface-restructuring differences between polyrotaxanes and random copolymers in aqueous environment[J]. Langmuir, 2018, 34: 12463-12470. | 57 | 董美美. 基于环糊精和聚轮烷的新型亲和膜构建及性能研究[D]. 天津: 天津工业大学, 2016. | 57 | DONG M M. Construction and properties of novel affinity membrane based on cyclodextrin and polyrotaxane[D]. Tianjin: Tiangong University, 2016. | 58 | 刘泽华, 赵玉红, 双金玲, 等. 阳离子淀粉固载β-环糊精用于废水处理[J]. 中国造纸, 2007,26(7):19-21. | 58 | LIU Z H, ZHAO Y H, SHUANG J L, et al. Cationic starch immobilized β-cyclodextrin and its application in simulative papermaking wastewater treatment[J]. China Pulp Paper, 2007, 26(7):19-21. | 59 | 肖璐. 含准轮烷滤膜的抗污染及吸附性能研究[D]. 大连: 大连理工大学, 2008. | 59 | XIAO L. Antifouling performance and adsorption property of membrane with polyrotanxe[D]. Dalian: Dalian University of Technology, 2008. | 60 | 冯志远. 基于响应面优化条件下改性β-环糊精聚轮烷对钍(Ⅳ)的吸附研究[D]. 衡阳: 南华大学, 2017. | 60 | FENG Z Y. Optimization of thorium (Ⅳ) ions adsorption onto a modified β-cyclodextrin polyrotaxane using response surface methodology (RSM)[D]. Hengyang: University of South China, 2017. | 61 | 高静. 静电纺丝制备环糊精聚准轮烷/聚合物基核壳结构纳米纤维及其应用[D]. 北京: 北京化工大学, 2015. | 61 | GAO J. The preparation and application of electrospun α-cyclodextrins pseudopolyrotaxane/polymer nanofibers with core-shell structure[D]. Beijing: Beijing University of Chemical Technology, 2015. | 62 | MA S S, LIN L G, WANG Q, et al. Bioinspired EVAL membrane modified with cilia-like structures showing simultaneously enhanced permeability and antifouling properties[J]. Colloids and Surfaces B: Biointerfaces, 2019, 181: 134-142. | 63 | FAN B, HUANG X. Characteristics of a self-forming dynamic membrane coupled with a bioreactor for municipal wastewater treatment[J]. Environmental Science & Technology, 2002, 36(23): 5245-5251. | 64 | TANEDA H, ATSUOMI S, MATSUNO H, et al. Design of a well-defined polyrotaxane structure on a glassy polymer surface[J]. Langmuir, 2018, 34: 709-714. | 65 | YANAGI K, YAMADA N L, KATO K, et al. Polyrotaxane brushes dynamically formed at a water/elastomer interface[J]. Langmuir, 2018, 34: 5297-5302. | 66 | YASUDA Y, HIDAKA Y, MAYUMI K, et al. Molecular dynamics of polyrotaxane in solution investigated by quasi-elastic neutron scattering and molecular dynamics simulation: sliding motion of rings on polymer[J]. Journal of the American Chemical Society, 2019, 141: 9655-9663. | 67 | LIN Q M, HOU X S, KE C F. Ring Shuttling controls macroscopic motion in a three-dimensional printed polyrotaxane monolith[J]. Angewandte Chemie, 2017, 129(16): 4523-4528. | 68 | MA S S, LIN L G, WANG Q, et al. Modification of supramolecular membranes with 3D hydrophilic slide rings for improvement of antifouling properties and effective separation[J]. ACS Applied Materials Interfaces, 2019, 11(31): 28527-28537. | 69 | 葛晓琳. “离子穿梭”型离子膜制备及传导性能研究[D]. 合肥: 中国科学技术大学, 2016. | 69 | GE X L. The preparation and ion transport performance research of ion exchange membranes with a mobile ion shuttle[D]. Heifei: University of Science and Technology of China, 2016. | 70 | GE X L, HE Y B, GUIVER M D, et al. Alkaline anion-exchange membranes containing mobile ion shuttles[J]. Advanced Materials, 2016, 28(18): 3467-3472. | 71 | GE X L, HE Y B, LIANG X, et al. Thermally triggered polyrotaxane translational motion helps proton transfer[J]. Nature Communications, 2018, 9(1): 2297. | 72 | IMHOLT L, D?RR T S, ZHANG P, et al. Grafted polyrotaxanes as highly conductive electrolytes for lithium metal batteries[J]. Journal of Power Sources, 2019, 409: 148-158. | 73 | CHO H D, WON J, HA H Y. Composite polymer electrolyte membranes containing polyrotaxanes[J]. Renewable Energy, 2008, 33(2): 248-253. | 74 | SON J H, KANG Y S, WON J. Poly(vinyl alcohol)-based polymer electrolyte membranes containing polyrotaxane[J]. Journal of Membrane Science, 2006, 281(1): 345-350. | 75 | LIN L G, DONG M M, LIU C Y, et al. Building movable bridges in membrane matrix by polyrotaxane crosslinking for sulfur removal[J]. Materials Letters, 2014, 126: 59-62. | 76 | NAKAHATA M, MORI S, TAKASHIMA Y, et al. Self-healing materials formed by cross-linked polyrotaxanes with reversible bonds[J]. Chem., 2016, 1(5): 766-775. | 77 | KATO K, ITO K. Polymer networks characterized by slidable crosslinks and the asynchronous dynamics of interlocked components[J]. Reactive and Functional Polymers, 2013, 73(2): 405-412. | 78 | 刘春雨. 基于大环化合物的新型交联改性渗透汽化膜构建及其性能研究[D]. 天津: 天津工业大学, 2016. | 78 | LIU C Y. Study on the construction and properties of new cross-linked modified pervaporation membrane based on macrocyclic compounds[D]. Tianjin: Tiangong University, 2016. | 79 | YOO D J, ELABD A, CHOI S, et al. Highly elastic polyrotaxane binders for mechanically stable lithium hosts in lithium-metal batteries[J]. Advanced Materials, 2019, 31: 1901645. | 80 | SEO J, MOON S W, KANG H, et al. Foldable and extremely scratch-resistant hard coating materials from molecular necklace-like cross-linkers[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 27306-27317. | 81 | SHEIKO S S, DOBRYNIN A V. Architectural code for rubber elasticity: from supersoft to superfirm materials[J]. Macromolecules, 2019, 52: 7531-7546. | 82 | KATO K, HORI A, ITO K. An efficient synthesis of low-covered polyrotaxanes grafted with poly(ε -caprolactone) and the mechanical properties of its cross-linked elastomers[J]. Polymer, 2018, 147: 67-73. | 83 | JIANG L, LIU C, MAYUMI K, et al. Highly stretchable and instantly recoverable slide-ring gels consisting of enzymatically synthesized polyrotaxane with low host coverage[J]. Chemistry of Materials: A Publication of the American Chemistry Society, 2018, 30: 5013-5019. | 84 | ZHENG S Y, LIU C, JIANG L, et al. Slide-ring cross-links mediated tough metallosupramolecular hydrogels with superior self-recoverability[J]. Macromolecules, 2019, 52(17): 6748-6755. |
|