1 | WALKER J F, CHADWICK A F. Trioxane as a source of formaldehyde[J]. Industrial and Engineering Chemistry, 1947, 39(8): 974-977. | 2 | HOCHGREB S, DRYER F L. Decomposition of 1,3,5-trioxane at 700~800K[J]. Journal of Physical Chemistry, 1992,96(1): 295-297. | 3 | WU Q, LI W J, WANG M, et al. Synthesis of polyoxymethylene dimethyl ethers from methylal and trioxane catalyzed by Br??nsted acid ionic liquids with different alkyl groups[J]. RSC Advances, 2015, 5(71): 57968-57974. | 4 | BARANOWSKI C J, BAHMANPOUR A M, KROCHER O. Catalytic synthesis of polyoxymethylene dimethyl ethers (OME): a review[J]. Applied Catalysis B: Environmental, 2017, 217: 407-420. | 5 | WU J B, ZHU H Q, WU Z W, et al. High Si/Al ratio HZSM-5 zeolite: an efficient catalyst for the synthesis of polyoxymethylene dimethyl ethers from dimethoxymethane and trioxymethylene[J]. Green Chemistry, 2015, 17(4): 2353-2357. | 6 | WANG R Y, WU Z W, LI Z K, et al. Synthesis of polyoxymethylene dimethyl ethers from dimethoxymethane and trioxymethylene over graphene oxide: probing the active species and relating the catalyst structure to performance[J]. Applied Catalysis A: General, 2019, 570: 15-22. | 7 | MU Y B, JIA M C, JIANG W, et al. A novel branched polyoxymethylene synthesized by cationic copolymerization of 1,3,5-trioxane with 3-(alkoxymethyl)-3-ethyloxetane[J]. Macromolecular Chemistry & Physics, 2013, 214(23): 2752-2760. | 8 | MAIWALD M, GRUTZNER T, STROFER E, et al. Quantitative NMR spectroscopy of complex technical mixtures using a virtual reference: chemical equilibria and reaction kinetics of formaldehyde-water-1,3,5-trioxane[J]. Analytical & Bioanalytical Chemistry, 2006, 385(5): 910-917. | 9 | GRUTZNER T, HASSE H, LANG N, et al. Development of a new industrial process for trioxane production[J]. Chemical Engineering Science, 2007, 62(18-20): 5613-5620. | 10 | WALKER F. The state of formaldehyde in aqueous solutions[J]. Journal of Physical Chemistry, 1931, 35(4): 1104-1113. | 11 | MASAMOTO J, HAMANAKA K, YOSHIDA K, et al. Synthesis of trioxane using heteropolyacids as catalyst[J]. Angewandte Chemie International Edition, 2000, 39(12): 2102-2104. | 12 | MA W T, HU Y F, QI J G, et al. Acid-catalyzed synthesis of trioxane in aprotic media[J]. Industrial & Engineering Chemistry Research, 2017, 56(24): 6910-6915. | 13 | FRANK C E, WILMINGTON. Prepararion of alpha trioxymethylene:US230480[P]. 1942-10-08. | 14 | 陈静, 宋河远, 夏春谷, 等. 哑铃型离子液体催化甲醛环化反应合成三聚甲醛的方法: CN102020629[P]. 2011-04-20. | 14 | CHEN J, SONG H Y, XIA C G, et al. Method for synthesis of trioxymethylene by reaction of cyclizing formaldebyde catalyzed by geminal decationic ionic liquid: CN102020629[P]. 2011-04-20. | 15 | 陈静, 宋河远, 夏春谷, 等. 双功能化离子液体催化甲醛环化反应合成三聚甲醛的方法: CN102020630[P]. 2011-04-20. | 15 | CHEN J, SONG H Y, XIA C G, et al. Method for synthesizing trioxymethylene by catalyzing formaldehyde cyclization reaction through bifunctional ionic liquid:CN102020630[P]. 2011-04-20. | 16 | KASHIHARA O, AKIYAMA M. Process for producing trioxane: US5929257[P]. 1999-07-27. | 17 | MORISHITA H. Process for production of trioxane:US5962702[P]. 1999-10-05. | 18 | GELBARD G. Organic synthesis by catalysis with ion-exchange resins[J]. Industrial & Engineering Chemistry Research, 2005, 44(23): 8468-8498. | 19 | ISHIDA H, AKAGISHI K. The synthetic reaction of trioxane from formalin on the zeolite catalysts[J]. Nippon Kagaku Kaishi, 1996(3): 290-297. | 20 | HIROHISA M, JUNZO M. Production of trioxane:JPH01319476[P]. 1989-12-25. | 21 | HIROSHI I, KOJI N. Production of trioxane:JP2571698B2[P]. 1989-04-24. | 22 | YE Y L, FU M Q, CHEN H L, et al. Effect of acidity on the catalytic performance of ZSM-5 zeolites in the synthesis of trioxane from formaldehyde[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 311-320. | 23 | YE Y, YAO M, CHEN H, et al. Influence of silanol defects of ZSM-5 zeolites on trioxane synthesis from formaldehyde[J]. Catalysis Letters, 2020, 150(5): 1445-1453. | 24 | PINAR A B, GOMEZ-HORTIGUELA L, MCCUSKER L B, et al. Controlling the aluminum distribution in the zeolite ferrierite via the organic structure directing agent[J]. Chemistry of Materials, 2013, 25(18): 3654-3661. | 25 | SAZAMA P, DEDECEK J, GABOVA V, et al. Effect of aluminium distribution in the framework of ZSM-5 on hydrocarbon transformation. Cracking of 1-butene[J]. Journal of Catalysis, 2008, 254(2): 180-189. | 26 | ZHAO R R, ZHAO Z C, LI S K, et al. Insights into the correlation of aluminum distribution and Br??nsted acidity in H-beta zeolites from solid-state NMR spectroscopy and DFT calculations[J]. Journal of Physical Chemistry Letters, 2017, 8(10): 2323-2327. | 27 | SOBALIK Z, SAZAMA P, DEDECEK J, et al. Critical evaluation of the role of the distribution of Al atoms in the framework for the activity of metallo-zeolites in redox N2O/NOx reactions[J]. Applied Catalysis A: General, 2014, 474: 178-185. | 28 | LIU H, WANG H, XING A H, et al. Effect of Al distribution in MFI framework channels on the catalytic performance of ethane and ethylene aromatization[J]. Journal of Physical Chemistry C, 2019, 123(25): 15637-15647. | 29 | YOKOI T, MOCHIZUKI H, NAMBA S, et al. Control of the Al distribution in the framework of ZSM-5 zeolite and its evaluation by solid-state NMR technique and catalytic properties[J]. Journal of Physical Chemistry C, 2015, 119(27): 15303-15315. | 30 | LOK B M, CANNAN T R, MESSINA C A. The role of organic-molecules in molecular-sieve synthesis[J]. Zeolites, 1983, 3(4): 282-291. | 31 | BURKETT S L, DAVIS M E. Mechanism of structure direction in the synthesis of Si-ZSM-5:an investigation by intermolecular H-1-Si-29 CP MAS NMR[J]. Journal of Physical Chemistry, 1994, 98(17): 4647-4653. | 32 | BURKETT S L, DAVIS M E. Mechanism of structure direction in the synthesis of pure-silica zeolites. 1. Synthesis of TPA/Si-ZSM-5[J]. Chemistry of Materials, 1995, 7(5): 920-928. |
|