1 | HUANG R, YU R, WU H, et al. Investigation on the removal of SO3 in ammonia-based WFGD system[J]. Chemical Engineering Journal, 2016, 289: 537-543. | 2 | 竹涛, 张书庆, 郭娜.火电行业SO3控制技术研究进展[J].环境工程, 2018, 36(2): 109-112. | 2 | ZHU Tao, ZHANG Shuqing, GUO Na. Progress in research on control technique of SO3 in thermal power plant[J]. Environmental Engineering, 2018, 36(2): 109-112. | 3 | 姚宣, 杨建辉, 王洪亮, 等. 碱性吸收剂喷射脱除电厂烟气SO3技术及理论模型[J]. 中国电力, 2018, 51(4): 130-135. | 3 | YAO Xuan, YANG Jianhui, WANG Hongliang, et al. Theoretical model for SO3 removal from flue gas using alkali sorbent injection technology in power plant[J]. Electric Power, 2018, 51(4): 130-135. | 4 | 赵瑞, 刘毅, 李延兵, 等. 浅谈燃煤电站SO3检测方法及脱除策略[J]. 神华科技, 2015(5): 64-68. | 4 | ZHAO Rui, LIU Yi, LI Yanbing, et al. Review on the SO3 detection method and removal strategy in coal-fired power plants[J]. Shenhua Science and Technology, 2015(5): 64-68. | 5 | 王宏亮, 薛建明, 许月阳, 等. 燃煤电站锅炉烟气中SO3的生成及控制[J]. 电力科技与环保, 2014(5):17-20. | 5 | WANG Hongliang, XUE Jianming, XU Yueyang, et al. Formation and control of SO3 from coal-fired power plants[J]. Electric Power Technology and Environmental Protection, 2014(5): 17-20. | 6 | 郭彦鹏, 狄华娟, 潘丹萍, 等. 燃煤烟气中SO3的形成及其控制措施[J]. 中国电力, 2016, 49(8): 154-171. | 6 | GUO Yanpeng, DI Huajuan, PAN Danping, et al. The formation and control of SO3 in coal-fired flue gas[J]. Electric Power, 2016, 49(8): 154-171. | 7 | Electric Power Research Institute. SO3 mitigation-current utility operating experience[R]. Palo Alto: EPRI, 2006. | 8 | 刘秀如, 赵勇, 孙漪清, 等. 燃煤电厂SO3控制及脱除技术研究进展[J]. 电力科学与工程, 2018, 34(2): 56-62. | 8 | LIU Xiuru, ZHAO Yong, SUN Yiqing, et al. Progress in research on control and removal technology of SO3 in flue gas of coal power plants[J]. Electric Power Science and Engineering, 2018, 34(2): 56-62. | 9 | 李欣怡, 潘丹萍, 胡斌, 等. 燃煤烟气中SO3迁移转化特性及其控制的研究现状及展望[J]. 化工进展, 2018, 37(12):370-379. | 9 | LI Xinyi, PAN Danping, HU Bin, et al. Research status and prospects of migration, transformation and control of SO3 from coal-fired flue gas[J]. Chemical Industry and Engineering Progress, 2018, 37(12):370-379. | 10 | 胡冬, 王海刚, 郭婷婷, 等. 燃煤电厂烟气SO3控制技术的研究及进展[J]. 科学技术与工程, 2015, 15(35):92-99. | 10 | HU Dong, WANG Haigang, GUO Tingting, et al. Research and development of mitigating technology of SO3 in flue gas from coal power plants[J]. Science Technology and Engineering, 2015, 15(35):92-99. | 11 | 舒喜, 田原润, 惠润堂, 等. SO3在燃煤电厂各设备中形成和脱除现状研究[J]. 环境科学与技术, 2017, 40(11): 121-126. | 11 | SHU Xi, TIAN Yuanrun,HUI Runtang, et al. Formation and removal of SO3 in different equipment of coal-fired power plant: a review[J]. Environmental Science & Technology, 2017,40(11):121-126. | 12 | 陈晓露, 赵钦新, 鲍颖群, 等. SO3脱除技术实验研究[J]. 动力工程学报, 2014, 34(12): 966-971. | 12 | CHEN Xiaolu, ZHAO Qinxin, BAO Yingqun, et al. Experimental research on SO3 removal[J]. Journal of Chinese Society of Power Engineering, 2014, 34(12): 966-971. | 13 | 陈朋. 钙基吸收剂脱除燃煤烟气中SO3的研究[D]. 济南:山东大学, 2011. | 13 | CHEN Peng. Research of SO3 removal from flue-gas by calcium-based absorbens[D]. Jinan: Shandong University, 2011. | 14 | ZHANG L, QU H, DU T, et al. H2O and SO2 tolerance, activity and reaction mechanism of sulfated Ni-Ce-La composite oxide nanocrystals in NH3-SCR[J]. Chemical Engineering Journal, 2016, 296: 122-131. | 15 | QING M, SU S, WANG L, et al. Getting insight into the oxidation of SO2 to SO3 over V2O5-WO3/TiO2 catalysts: reaction mechanism and effects of NO and NH3[J]. Chemical Engineering Journal, 2019, 361: 1215-1224. | 16 | SHAN W, SONG H. Catalysts for the selective catalytic reduction of NOx with NH3 at low temperature[J]. Catalysis Science & Technology, 2015, 5(9): 4280-4288. | 17 | 张道军, 马子然, 孙琦, 等. 硫酸氢铵在钒基选择性催化还原催化剂表面的生成、作用及防治[J]. 化工进展, 2018, 37(7): 2635-2643. | 17 | ZHANG Daojun, MA Ziran, SUN Qi, et al. Formation mechanism, effects and prevention of NH4HSO4 formed on the surface of V2O5 based catalysts[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2635-2643. | 18 | YE D, QU R, ZHENG C, et al. Mechanistic investigation of enhanced reactivity of NH4HSO4 and NO on Nb- and Sb-doped VW/Ti SCR catalysts[J]. Applied Catalysis A: General, 2018, 549: 310-319. |
|