1 | 肖长发, 刘振.膜分离材料应用基础[M]. 北京: 化学工业出版社, 2014: 3. | 1 | XIAO C F, LIU Z. Basis of membrane separation material application[M]. Beijing: Chemical Industry Press, 2014: 3. | 2 | 安树林. 膜科学技术及其应用[M]. 北京: 中国纺织出版社, 2018: 1-2. | 2 | AN S H. Membrane science and technology and its application[M]. Beijing: China Textile & Apparel Press, 2018: 1-2. | 3 | 徐又一, 徐志康. 高分子膜材料[M]. 北京: 化学工业出版社, 2005: 1. | 3 | XU Y Y, XU Z K. Polymer membrane material[M]. Beijing: Chemical Industry Press, 2005: 1. | 4 | FRISING T, NOIK C, DALMAZZONE C. The liquid/liquid sedimentation process: from droplet coalescence to technologically enhanced water/oil emulsion gravity separators: a review[J]. Journal of Dispersion Science and Technology, 2006, 27(7): 1035-1057. | 5 | CHEN H X, TANG H M, DUAN M, et al. Oil-water separation property of polymer-contained wastewater from polymer-flooding oilfields in Bohai Bay, China[J]. Environmental Technology, 2015, 36(11): 1373-1380. | 6 | CAMBIELLA A, BENITO J M, PAZOS C, et al. Centrifugal separation efficiency in the treatment of waste emulsified oils[J]. Chemical Engineering Research & Design, 2006, 84(A1): 69-76. | 7 | KRAAI G N, SCHUUR B, ZWOL F VAN, et al. Novel highly integrated biodiesel production technology in a centrifugal contactor separator device[J]. Chemical Engineering Journal, 2009, 154(1-3): 384-389. | 8 | ETCHEPARE R, OLIVEIRA H, AZEVEDO A, et al. Separation of emulsified crude oil in saline water by dissolved air flotation with micro and nanobubbles[J]. Separation and Purification Technology, 2017, 186: 326-332. | 9 | SATHTHASIVAM J, LOGANATHAN K, SARP S. An overview of oil-water separation using gas flotation systems[J]. Chemosphere, 2016, 144: 671-680. | 10 | TELLEZ G T, NIRMALAKHANDAN N, GARDEA-TORRESDEY J L. Performance evaluation of an activated sludge system for removing petroleum hydrocarbons from oilfield produced water[J]. Advances in Environmental Research, 2002, 6(4): 455-470. | 11 | AL-MUTAIRI N Z, AL-SHARIFI F A, AL-SHAMMARI S B. Evaluation study of a slaughterhouse wastewater treatment plant including contact-assisted activated sludge and DAF[J]. Desalination, 2008, 225(1-3): 167-175. | 12 | BINNER E R, ROBINSON J P, KINGMAN S W, et al. Separation of oil/water emulsions in continuous flow using microwave heating[J]. Energy & Fuels, 2013, 27(6): 3173-3178. | 13 | BINNER E R, ROBINSON J P, SILVESTER S A, et al. Investigation into the mechanisms by which microwave heating enhances separation of water-in-oil emulsions[J]. Fuel, 2014, 116: 516-521. | 14 | LI G, GUO S, WANG S, et al. Dewatering and recycling of aged emulsions from polymer flooding[J]. Petroleum Science and Technology, 2014, 32(15): 1876-1885. | 15 | ZHANG Y, LIU Y, JI R, et al. Application of variable frequency technique on electrical dehydration of water-in-oil emulsion[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 386(1/2/3): 185-190. | 16 | JUNG Y T, DIOSADY L L. Application of a ternary phase diagram to the phase separation of oil-in-water emulsions using isopropyl alcohol[J]. Journal of the American Oil Chemists Society, 2012, 89(12): 2127-2134. | 17 | PERERA J M, STEVENS G W. The role of additives in metal extraction in oil/water systems[J]. Solvent Extraction and Ion Exchange, 2011, 29(3): 363-383. | 18 | GUO Z, WANG S, GU Y, et al. Separation characteristics of biomass pyrolysis oil in molecular distillation[J]. Separation and Purification Technology, 2010, 76(1): 52-57. | 19 | SALIM C, EGASHIRA R. Separation of coal tar distillate by solvent extraction-separation of extract phase using distillation[J]. Journal of the Japan Petroleum Institute, 2006, 49(6): 326-334. | 20 | 张进, 孟广耀. 有机粘土辅助的微滤膜处理高浓度含油废水[J]. 水处理技术, 2010, 36(10): 88-91. | 20 | ZHANG J, MENG G Y. The role of organoclay as aid for ceramic membrane microfil tration of oily wasterwater[J].Technology of Water Treatment, 2010, 36(10): 88-91. | 21 | 李菊萍. 破乳-氧化-吸附法处理高浓度乳化含油废水的研究[D]. 镇江: 江苏大学, 2009. | 21 | LI J P. The study of dmulsification-oxidation-adsorption treating method for heavy concentration emulsion wasterwater[D]. Zhenjiang: Jiangsu University, 2009. | 22 | MEDINA-SANDOVAL C F, VALENCIA-DAVILA J A, COMBARIZA M Y, et al. Separation of asphaltene-stabilized water in oil emulsions and immiscible oil/water mixtures using a hydrophobic cellulosic membrane[J]. Fuel, 2018, 231: 297-306. | 23 | ZHANG T, XIAO C F, HAO J Q, et al. Studies on nonwoven fabric reinforced PVDF/GE oil-absorptive composite membrane[J]. Acta Polymerica Sinica, 2016(9): 1198-1205. | 24 | FAN Z W, XIAO C F, LIU H L, et al. Structure design and performance study on braid-reinforced cellulose acetate hollow fiber membranes[J]. Journal of Membrane Science, 2015, 486: 248-256. | 25 | DRELICH J, CHIBOWSKI E. Superhydrophilic and superwetting surfaces: definition and mechanisms of control[J]. Langmuir, 2010, 26(24): 18621-18623. | 26 | WANG Z X, ELIMELECH M, LIN S H. Environmental applications of interfacial materials with special wettability[J]. Environmental Science & Technology, 2016, 50(5): 2132-2150. | 27 | ROACH P, SHIRTCLIFFE N J, NEWTON M I. Progress in superhydrophobic surface development[J]. Soft Matter, 2008, 4(2): 224-240. | 28 | BERG J, ERIKSSON L, CLAESSON P, et al. 3-Component langmuir-blodgett-films with a controllable degree of polarity[J]. Langmuir, 1994, 10(4): 1225-1234. | 29 | YOON R H, FLINN D H, RABINOVICH Y I. Hydrophobic interactions between dissimilar surfaces[J]. Journal of Colloid and Interface Science, 1997, 185(2): 363-370. | 30 | GUO C, WANG S, LIU H, et al. Wettability alteration of polymer surfaces produced by scraping[J]. Journal of Adhesion Science and Technology, 2008, 22(3/4): 395-402. | 31 | GAO L C, MCCARTHY T J. Contact angle hysteresis explained[J]. Langmuir, 2006, 22(14): 6234-6237. | 32 | 沈青. 高分子表面化学[M]. 北京: 科学出版社, 2014: 3. | 32 | SHEN Q. Polymer surface chemistry[M]. Beijing: Science Press, 2014: 3. | 33 | 朱瑶, 赵振国. 界面化学基础[M]. 北京: 化学工业出版社, 1996: 216-220. | 33 | ZHU B Y, ZHAO Z G. Basics of interface chemistry[M]. Beijing: Chemical Industry Press, 1996: 216-220. | 34 | LAFUMA A, QUERE D. Superhydrophobic states[J]. Nature Materials, 2003, 2(7): 457-460. | 35 | GAO L C, MCCARTHY T J. How wenzel and cassie were wrong[J]. Langmuir, 2007, 23(7): 3762-3765. | 36 | JUNG Y C, BHUSHAN B. Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity[J]. Langmuir, 2009, 25(24): 14165-14173. | 37 | 李海波, 胡筱敏, 罗茜. 含油废水的膜处理技术[J]. 过滤与分离, 2000(4): 10-14, 40. | 37 | LI H B, HU X M, LUO Q. Study on the membrane processing of oily wastewater[J]. Fileter & Separator, 2000(4): 10-14, 40. | 38 | 赵光楠, 马晓薇, 吴德东. 油田含油污水处理方法对比研究[J]. 环境科学与管理, 2014, 39(2): 126-128, 151. | 38 | ZHAO G L, MA X W, WU D D. Comparison study on oily wasterwater treatment methods[J]. Environmental Science and Management, 2014, 39(2): 126-128, 151. | 39 | 许振良. 膜法水处理技术[M]. 北京: 化学工业出版社, 2001: 31-32. | 39 | XU Z L. Membrane water treatment technology[M]. Beijing: Chemical Industry Press, 2001: 31-32. | 40 | PAN Z H, CAO S J, LI J F, et al. Anti-fouling TiO2 nanowires membrane for oil/water separation: synergetic effects of wettability and pore size[J]. Journal of Membrane Science, 2019, 572: 596-606. | 41 | KOTA A K, KWON G, CHOI W, et al. Hygro-responsive membranes for effective oil-water separation[J]. Nature Communications, 2012, 3: 8. | 42 | GONDAL M A, SADULLAH M S, QAHTAN T F, et al. Fabrication and wettability study of WO3 coated photocatalytic membrane for oil-water separation: a comparative study with ZnO coated membrane[J]. Scientific Reports, 2017, 7: 1-10. | 43 | JIANG B, ZHANG H J, SUN Y L, et al. Covalent layer-by-layer grafting (LBLG) functionalized superhydrophobic stainless steel mesh for oil/water separation[J]. Applied Surface Science, 2017, 406: 150-160. | 44 | LU Y, LI Z, HAILU G, et al. Study on the oil/water separation performance of a super-hydrophobic copper mesh under downhole conditions[J]. Journal of Industrial and Engineering Chemistry, 2019, 72: 310-318. | 45 | ZHANG T, XIAO C F, ZHAO J, et al. Graphene-coated poly(ethylene terephthalate) nonwoven hollow tube for continuous and highly effective oil collection from the water surface[J]. ACS Omega, 2019, 4(4): 7237-7245. | 46 | CHANG H-Y, VENAULT A. Adjusting the morphology of poly(vinylidene fluoride-co-hexafluoropropylene) membranes by the VIPS process for efficient oil-rich emulsion separation[J]. Journal of Membrane Science, 2019, 581: 178-194. | 47 | WANG S T, LIU K S, YAO X, et al. Bioinspired surfaces with superwettability: new insight on theory, design, and applications[J]. Chemical Reviews, 2015, 115(16): 8230-8293. | 48 | GE J L, ZONG D D, JIN Q, et al. Biomimetic and superwettable nanofibrous skins for highly efficient separation of oil-in-water emulsions[J]. Advanced Functional Materials, 2018, 28(10): 1-10. | 49 | WANG X Y, XIAO C F, LIU H L, et al. A study on fabrication of PVDF-HFP/PTFE blend membranes with controllable and bicontinuous structure for highly effective water-in-oil emulsion separation[J]. RSC Advances, 2018, 8(49): 27754-27762. | 50 | HUANG Y, XIAO C F, HUANG Q L, et al. Robust preparation of tubular PTFE/FEP ultrafine fibers-covered porous membrane by electrospinning for continuous highly effective oil/water separation[J]. Journal of Membrane Science, 2018, 568: 87-96. | 51 | WANG Y Y, LIU X H, LIAN M, et al. Continuous fabrication of polymer microfiber bundles with interconnected microchannels for oil/water separation[J]. Applied Materials Today, 2017, 9: 77-81. | 52 | DENG D, PRENDERGAST D P, MACFARLANE J, et al. Hydrophobic meshes for oil spill recovery devices[J]. ACS Applied Materials & Interfaces, 2013, 5(3): 774-781. | 53 | BAIER R E, SHAFRIN E G, ZISMAN W A. Adhesion: mechanisms that assist or impede it[J]. Science, 1968, 162(3860): 1360-1368. | 54 | 王中平, 孙振平, 金明. 表面物理化学[M]. 上海: 同济大学出版社, 2015: 69. | 54 | WANG Z P, SUN Z P, JIN M. Surface physicochemistry[M]. Shanghai: Tongji University Press, 2015: 69. | 55 | 王庆军, 陈庆民. 超疏水表面的制备技术及其应用[J]. 高分子材料科学与工程, 2005(2): 6-10. | 55 | WANG Q J, CHEN Q M. Recent research advances in manufacturing super hydrophobic membrane and applications[J]. Polymer Materials Science & Engineering, 2005(2): 6-10. | 56 | YUE X J, LI J X, ZHANG T, et al. In situ one-step fabrication of durable superhydrophobic-superoleophilic cellulose/LDH membrane with hierarchical structure for efficiency oil/water separation[J]. Chemical Engineering Journal, 2017, 328: 117-123. | 57 | SHAHABADI S M S, BRANT J A. Bio-inspired superhydrophobic and superoleophilic nanofibrous membranes for non-aqueous solvent and oil separation from water[J]. Separation and Purification Technology, 2019, 210: 587-599. | 58 | LIU D F, YU Y L, CHEN X, et al. Selective separation of oil and water with special wettability mesh membranes[J]. RSC Advances, 2017, 7(21): 12908-12915. | 59 | LIN X, HEO J, JEONG H, et al. Robust superhydrophobic carbon nanofiber network inlay-gated mesh for water-in-oil emulsion separation with high flux[J]. Journal of Materials Chemistry A, 2016, 4(46): 17970-17980. | 60 | LIN X D, CHOI M, HEO J, et al. Cobweb-inspired superhydrophobic multiscaled gating membrane with embedded network structure for robust water-in-oil emulsion separation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 3448-3455. | 61 | SHI Z, ZHANG W, ZHANG F, et al. Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films[J]. Advanced Materials, 2013, 25(17): 2422-2427. | 62 | GU J C, XIAO P, CHEN J, et al. Robust preparation of superhydrophobic polymer/carbon nanotube hybrid membranes for highly effective removal of oils and separation of water-in-oil emulsions[J]. Journal of Materials Chemistry A, 2014, 2(37): 15268-15272. | 63 | HAO J Q, XIAO C F, ZHAO J, et al. Fabrication and properties of graphene-coated polypropylene hollow fiber membranes[J]. Desalination and Water Treatment, 2017, 68: 353-360. | 64 | 肖长发, 陈凯凯. 石墨烯系吸附与分离功能材料研究进展[J]. 纺织学报, 2016, 37(10): 162-169. | 64 | XIAO C F, CHEN K K. Research progress of graphene-plus adsorption and separation functional materials[J]. Journal of Textile Research, 2016, 37(10): 162-169. | 65 | GE J, ZHAO H Y, ZHU H W, et al. Advanced sorbents for oil-spill cleanup: recent advances and future perspectives[J]. Advanced Materials, 2016, 28(47): 10459-10490. | 66 | GUPTA S, TAI N H. Carbon materials as oil sorbents: a review on the synthesis and performance[J]. Journal of Materials Chemistry A, 2016, 4(5): 1550-1565. | 67 | MA Q L, CHENG H F, FANE A G, et al. Recent development of advanced materials with special wettability for selective oil/water separation[J]. Small, 2016, 12(16): 2186-2202. | 68 | CHEN K K, XIAO C F, LIU H L, et al. Graphene adsorption and separation functional materials[J]. Chemical Engineering & Technology, 2019, 42(2): 266-286. | 69 | RAFIEE J, MI X, GULLAPALLI H, et al. Wetting transparency of graphene[J]. Nature Materials, 2012, 11(3): 217-222. | 70 | ZHAO J, HAN P Y, QUAN Q, et al. A convenient oil-water separator from polybutylmethacrylate/graphene-deposited polyethylene terephthalate nonwoven fabricated by a facile coating method[J]. Progress in Organic Coatings, 2018, 115: 181-187. | 71 | ZHANG C, HE S, WANG D F, et al. Facile fabricate a bioinspired janus membrane with heterogeneous wettability for unidirectional water transfer and controllable oil-water separation[J]. Journal of Materials Science, 2018, 53(20): 14398-14411. | 72 | HAO J Q, XIAO C F, ZHANG T, et al. Preparation and performance of PET-braid-reinforced poly(vinylidene fluoride)/graphene hollow-fiber membranes[J]. Industrial & Engineering Chemistry Research, 2016, 55(7): 2174-2182. | 73 | GAO J F, SONG X, HUANG X W, et al. Facile preparation of polymer microspheres and fibers with a hollow core and porous shell for oil adsorption and oil/water separation[J]. Applied Surface Science, 2018, 439: 394-404. | 74 | ZHANG T, XIAO C F, ZHAO J, et al. Continuous separation of oil from water surface by a novel tubular unit based on graphene coated polyurethane sponge[J]. Polymers for Advanced Technologies, 2018, 29(8): 2317-2326. | 75 | HAN S W, KIM K D, SEO H O, et al. Oil-water separation using superhydrophobic PET membranes fabricated via simple dip-coating of PDMS-SiO2 nanoparticles[J]. Macromolecular Materials and Engineering, 2017, 302(11): 1-10. | 76 | LIN Y F, HSU S H. Solvent-resistant CTAB-modified polymethylsilsesquioxane aerogels for organic solvent and oil adsorption[J]. Journal of Colloid and Interface Science, 2017, 485: 152-158. | 77 | LI X P, CAO M, SHAN H T, et al. Facile and scalable fabrication of superhydrophobic and superoleophilic PDMS-co-PMHS coating on porous substrates for highly effective oil/water separation[J]. Chemical Engineering Journal, 2019, 358: 1101-1113. | 78 | GUO P, ZHAI S R, XIAO Z Y, et al. Preparation of superhydrophobic materials for oil/water separation and oil absorption using PMHS-TEOS-derived xerogel and polystyrene[J]. Journal of Sol-Gel Science and Technology, 2014, 72(2): 385-393. | 79 | WANG L, YANG S, WANG J, et al. Fabrication of superhydrophobic TPU film for oil-water separation based on electrospinning route[J]. Materials Letters, 2011, 65(5): 869-872. | 80 | CHENG M, GAO Y, GUO X, et al. A functionally integrated device for effective and facile oil spill cleanup[J]. Langmuir, 2011, 27(12): 7371-7375. | 81 | LIU Z, YU J, LIN W, et al. Facile method for the hydrophobic modification of filter paper for applications in water-oil separation[J]. Surface & Coatings Technology, 2018, 352: 313-319. | 82 | DAI C, LIU N, CAO Y, et al. Fast formation of superhydrophobic octadecylphosphonic acid (ODPA) coating for self-cleaning and oil/water separation[J]. Soft Matter, 2014, 10(40): 8116-8121. | 83 | NISHINO T, MEGURO M, NAKAMAE K, et al. The lowest surface free energy based on -cf3 alignment[J]. Langmuir, 1999, 15(13): 4321-4323. | 84 | LI J, GUAN P, LI M J, et al. Anticorrosive superhydrophobic polystyrene-coated mesh for continuous oil spill clean-up[J]. New Journal of Chemistry, 2017, 41(12): 4862-4868. | 85 | CRICK C R, GIBBINS J A, PARKIN I P. Superhydrophobic polymer-coated copper-mesh; membranes for highly efficient oil-water separation[J]. Journal of Materials Chemistry A, 2013, 1(19): 5943-5948. | 86 | YUAN S S, STROBBE D, KRUTH J P, et al. Super-hydrophobic 3D printed polysulfone membranes with a switchable wettability by self-assembled candle soot for efficient gravity-driven oil/water separation[J]. Journal of Materials Chemistry A, 2017, 5(48): 25401-25409. | 87 | XUE C H, LI Y R, HOU J L, et al. Self-roughened superhydrophobic coatings for continuous oil-water separation[J]. Journal of Materials Chemistry A, 2015, 3(19): 10248-10253. | 88 | HOU Y, DUAN C T, ZHAO N, et al. A versatile coating approach to fabricate superwetting membranes for separation of water-in-oil emulsions[J]. Chinese Journal of Polymer Science, 2016, 34(10): 1234-1239. | 89 | GAO S W, DONG X L, HUANG J Y, et al. Rational construction of highly transparent superhydrophobic coatings based on a non-particle, fluorine-free and water-rich system for versatile oil-water separation[J]. Chemical Engineering Journal, 2018, 333: 621-629. | 90 | YIN X X, WANG Z H, SHEN Y Q, et al. Facile fabrication of superhydrophobic copper hydroxide coated mesh for effective separation of water-in-oil emulsions[J]. Separation and Purification Technology, 2020, 230: 115856. | 91 | LI J, XU C, ZHANG Y, et al. Robust superhydrophobic attapulgite coated polyurethane sponge for efficient immiscible oil/water mixture and emulsion separation[J]. Journal of Materials Chemistry A, 2016, 4(40): 15546-15553. | 92 | JI D W, XIAO C F, AN S L, et al. Preparation of PSF/FEP mixed matrix membrane with super hydrophobic surface for efficient water-in-oil emulsion separation[J]. RSC Advances, 2018, 8(18): 10097-10106. | 93 | PAN J, XIAO C F, HUANG Q L, et al. ECTFE hybrid porous membrane with hierarchical micro/nano-structural surface for efficient oil/water separation[J]. Journal of Membrane Science, 2017, 524: 623-630. | 94 | ZHANG W B, SHI Z, ZHANG F, et al. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux[J]. Advanced Materials, 2013, 25(14): 2071-2076. | 95 | GU J T, GU H H, ZHANG Q, et al. Sandwich-structured composite fibrous membranes with tunable porous structure for waterproof, breathable, and oil-water separation applications[J]. Journal of Colloid and Interface Science, 2018, 514: 386-395. | 96 | ZHANG C L, LI P and CAO B. Electrospun microfibrous membranes based on PIM-1/POSS with high oil wettability for separation of oil-water mixtures and cleanup of oil soluble contaminants[J]. Industrial & Engineering Chemistry Research, 2015, 54(35): 8772-8781. | 97 | MANNEL M, SELZER L, BERNHARDT R, et al. Optimizing process parameters in commercial micro-stereolithography for forming emulsions and polymer microparticles in nonplanar microfluidic devices[J]. Advanced Materials Technologies, 2019, 4(1): 1-10. | 98 | LYU J, GONG Z J, HE Z K, et al. 3D printing of a mechanically durable superhydrophobic porous membrane for oil-water separation[J]. Journal of Materials Chemistry A, 2017, 5(24): 12435-12444. | 99 | HOU X, HU Y, GRINTHAL A, et al. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour[J]. Nature, 2015, 519(7541): 70-73. | 100 | LEE K M, PARK H, KIM J, et al. Fabrication of a superhydrophobic surface using a fused deposition modeling (FDM) 3D printer with poly lactic acid (PLA) filament and dip coating with silica nanoparticles[J]. Applied Surface Science, 2019, 467: 979-991. | 101 | YANG Y, LI X J, ZHENG X, et al. 3D-printed biomimetic super-hydrophobic structure for microdroplet manipulation and oil/water separation[J]. Advanced Materials, 2018, 30(9): 1-11. | 102 | ZHANG C, LI P, CAO B. Fabrication of superhydrophobic-superoleophilic fabrics by an etching and dip-coating two-step method for oil-water separation[J]. Industrial & Engineering Chemistry Research, 2016, 55(17): 5030-5035. | 103 | ZHANG F, SHI Z, CHEN L, et al. Porous superhydrophobic and superoleophilic surfaces prepared by template assisted chemical vapor deposition[J]. Surface & Coatings Technology, 2017, 315: 385-390. | 104 | SOSA M D, LOMBARDO G, ROJAS G, et al. Superhydrophobic brass and bronze meshes based on electrochemical and chemical self-assembly of stearate[J]. Applied Surface Science, 2019, 465: 116-124. |
|