1 | YAN B, LU W, CHENG Y. China goes green: cleaner production of chemicals[J]. Green Processing and Synthesis, 2012, 1(1): 33-47. | 2 | 曹战国, 肖国营, 曹贺鸣. 我国电石法PVC行业面对《关于汞的水俣公约》时限挑战须采取的积极措施及建议[J]. 聚氯乙烯, 2018, 46(10): 7-17. | 2 | CAO Zhanguo, XIAO Guoying, CAO Heming. Positive measures and suggestions for China’s calcium carbide method PVC industry facing the time limit challenge of Minamata Convention on Mercury [J]. Polyvinyl chloride, 2018, 46 (10): 7-17. | 3 | 李东周. 新型PVC低汞催化剂工业化[J]. 中国石油和化工, 2014(9):53-53. | 3 | LI Dongzhou. New low mercury catalyst for industrialization of PVC[J]. China Petroleum and Chemical Industry, 2014(9): 53-53. | 4 | 周军, 张学鲁, 李春华. 聚氯乙烯低汞化实践与总结[J]. 中国氯碱, 2014 (7): 15-18. | 4 | ZHOU Jun, ZHANG Xuelu, LI Chunhua. Polyvinyl chloride low mercury practice and summary [J]. China Chlor-Alkali, 2014(7): 15-18. | 5 | 张家亮, 李卓, 张威. 低汞触媒在电石法PVC中的应用[J]. 聚氯乙烯, 2019(7):29-31. | 5 | ZHANG Jialiang, LI Zhuo, ZHANG Wei. Application of low-level mercury catalyst in calcium carbide based PVC [J]. Polyvinyl Chloride, 2019 (7): 29-31. | 6 | NKOSI B, COVILLE N J, HUTCHINGS G J. Reactivation of a supported gold catalyst for acetylene hydrochlorination[J]. Journal of the Chemical Society, Chemical Communications, 1988 (1): 71-72. | 7 | NKOSI B, COVILLE N J, HUTCHINGS G J. Vapour phase hydrochlorination of acetylene with group Ⅷ and IB metal chloride catalysts[J]. Applied Catalysis, 1988, 43(1): 33-39. | 8 | ZHU M, KANG L, SU Y, et al. MClx(M=Hg, Au, Ru; x=2,3) catalyzed hydrochlorination of acetylene—a density functional theory study[J]. Canadian Journal of Chemistry, 2013, 91(2): 120-125. | 9 | 邓国才, 吴本湘. 乙炔法合成氯乙烯固相非汞催化剂的研制[J]. 聚氯乙烯, 1994 (6): 5-9. | 9 | DENG Guocai, WU Benxiang. Preparation of solid-phase non-mercury catalyst for vinyl chloride synthesis by acetylene method [J]. Polyvinyl Chloride, 1994 (6): 5-9 | 10 | LI H, WANG F, CAI W, et al. Hydrochlorination of acetylene using supported phosphorus-doped Cu-based catalysts[J]. Catalysis Science & Technology, 2015, 5(12): 5174-5184. | 11 | SMITH D M, WALSH P M, SLAGER T L. Studies of silica-supported metal chloride catalysts for the vapor-phase hydrochlorination of acetylene[J]. Journal of Catalysis, 1968, 11(2): 113-130. | 12 | NKOSI B, ADAMS M D, COVILLE N J, et al. Hydrochlorination of acetylene using carbon-supported gold catalysts: a study of catalyst reactivation[J]. Journal of Catalysis, 1991, 128(2): 378-386. | 13 | NKOSI B, COVILLE N J, HUTCHINGS G J, et al. Hydrochlorination of acetylene using gold catalysts: a study of catalyst deactivation[J]. Journal of Catalysis, 1991, 128(2): 366-377. | 14 | MALTA G, KONDRAT S A, FREAKLEY S J, et al. Identification of single-site gold catalysis in acetylene hydrochlorination[J]. Science, 2017, 355(6332): 1399-1403. | 15 | KAISER S K, LIN R, MITCHELL S, et al. Controlling the speciation and reactivity of carbon-supported gold nanostructures for catalysed acetylene hydrochlorination[J]. Chemical Science, 2019, 10(2): 359-369. | 16 | YE L, DUAN X, WU S, et al. Self-regeneration of Au/CeO2 based catalysts with enhanced activity and ultra-stability for acetylene hydrochlorination[J]. Nature Communications, 2019, 10(1): 914. | 17 | MA J, WANG S, SHEN B. Study on the effects of acetylene on an Au-Cu/C catalyst for acetylene hydrochlorination using Monte Carlo and DFT methods[J]. Reaction Kinetics, Mechanisms and Catalysis, 2013, 110(1): 177-186. | 18 | ZHANG H, DAI B, WANG X, et al. Hydrochlorination of acetylene to vinyl chloride monomer over bimetallic Au-La/SAC catalysts[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(1): 49-54. | 19 | ZHAO J, XU J T, XU J H, et al. Activated‐carbon‐supported gold-cesium () as highly effective catalysts for hydrochlorination of acetylene to vinyl chloride[J]. ChemPlusChem, 2015, 80(1): 196-201. | 20 | ZHANG H, DAI B, LI W, et al. Non-mercury catalytic acetylene hydrochlorination over spherical activated-carbon-supported Au-Co(Ⅲ)-Cu(Ⅱ) catalysts[J]. Journal of Catalysis, 2014, 316: 141-148. | 21 | YAMAMOTO Y, MATSUZAKI T, OHDAN K, et al. Structure and electronic state of PdCl2-CuCl2 catalysts supported on activated carbon[J]. Journal of Catalysis, 1996, 161(2): 577-586. | 22 | 赵璞君, 王富民, 蔡旺锋, 等. 乙炔氢氯化反应铜系催化剂的反应机理[J]. 分子催化, 2014(3): 259-267. | 22 | ZHAO Pujun, WANG Fumin, CAI Wangfeng, et al. Reaction mechanism of acetylene hydrochlorination in Cu-based catalyst[J]. Molecular Catalysis, 2014(3): 259-267. | 23 | JIANG W J, YIN Y, LIU X Q, et al. Fabrication of supported cuprous sites at low temperatures: an efficient, controllable strategy using vapor-induced reduction[J]. Journal of the American Chemical Society, 2013, 135(22): 8137-8140. | 24 | 王声洁. 乙炔氢氯化非汞催化反应制取氯乙烯单体研究[D]. 上海: 华东理工大学, 2010. | 24 | WANG Shengjie. Study on non-mercury catalytic acetylene hydrochlorination to produce vinyl chloride monomer(VCM) [D]. Shanghai: East China University of Science and Technology, 2010. | 25 | QIN J X, TAN P, JIANG Y, et al. Functionalization of metal-organic frameworks with cuprous sites using vapor-induced selective reduction: efficient adsorbents for deep desulfurization[J]. Green Chemistry, 2016, 18(11): 3210-3215. | 26 | 李志红, 黄伟, 左志军, 等. 用XPS研究不同方法制备的CuZnAl一步法二甲醚合成催化剂[J]. 催化学报, 2009, 30(2): 171-177. | 26 | LI Zhihong, HUANG Wei, ZUO Zhijun, et al. XPS study on CuZnAl catalysts prepared by different methods for direct synthesis of dimethyl ether[J]. Chinese Journal of Catalysis, 2009, 30 (2): 171-177. | 27 | YANO T, EBIZUKA M, SHIBATA S, et al. Anomalous chemical shifts of Cu 2p and Cu LMM auger spectra of silicate glasses[J]. Journal of Electron Spectroscopy and Related Phenomena, 2003, 131:133-144. | 28 | ZHANG J, HE Z, LI W, et al. Deactivation mechanism of AuCl3 catalyst in acetylene hydrochlorination reaction: a DFT study[J]. RSC Advances, 2012, 2(11): 4814-4821. | 29 | CONTE M, CARLEY A F, HEIRENE C, et al. Hydrochlorination of acetylene using a supported gold catalyst: a study of the reaction mechanism[J]. Journal of Catalysis, 2007, 250(2): 231-239. | 30 | LIU X, CONTE M, ELIAS D, et al. Investigation of the active species in the carbon-supported gold catalyst for acetylene hydrochlorination[J]. Catalysis Science & Technology, 2016, 6(13): 5144-5153. |
|