化工进展 ›› 2019, Vol. 38 ›› Issue (9): 4060-4074.DOI: 10.16085/j.issn.1000-6613.2019-0182
周军1,2(),吴雷3(),周晶晶1,梁坤1,宋永辉1,2,张秋利1,2,田宇红1,2
收稿日期:
2019-01-28
出版日期:
2019-09-05
发布日期:
2019-09-05
通讯作者:
吴雷
作者简介:
周军(1977—),男,教授,博士生导师,研究方向为煤清洁生产技术及高效利用。E-mail:基金资助:
Jun ZHOU1,2(),Lei WU3(),Jingjing ZHOU1,Kun LIANG1,Yonghui SONG1,2,Qiuli ZHANG1,2,Yuhong TIAN1,2
Received:
2019-01-28
Online:
2019-09-05
Published:
2019-09-05
Contact:
Lei WU
摘要:
微波技术与煤热解技术结合而成的煤微波热解技术可高效地治理传统煤热解技术中环境污染高和资源利用效率低的难题,为低变质煤的清洁高效利用和分级提质利用提供了新的思路。煤催化微波热解技术能有效改善热解升温特性和产物分布,从而受到较多学者的关注。本文从低变质煤催化微波热解技术发展历程着手,概述了国内外煤催化微波热解研究技术进展,通过加入Fe、Co、Ni和Cu等金属化合物或焦炭、活性炭等碳材料作为吸波剂,能显著增强煤对微波的吸收能力,提高热解升温速率、产物收率及产物质量,而有些金属化合物在微波热解反应中不仅起到吸波作用,还具有催化作用。碳基吸波催化剂作为一种性能优越的煤微波热解催化剂,具有优越的电磁和吸波性能、较好的催化性能和高经济性等优点,本文在煤催化微波热解技术研究现状的基础上,对碳基吸波催化剂进行了较为详细地分析,概述了碳基吸波催化剂的碳基体和催化活性组分的研究进展,对比了3种常见碳基吸波催化剂制备方法的优劣势。最后,总结了碳基吸波催化剂在研发过程中存在的难题,并展望了低变质煤催化微波热解技术的应用前景。
中图分类号:
周军,吴雷,周晶晶,梁坤,宋永辉,张秋利,田宇红. 煤催化微波热解技术及其碳基吸波催化剂研究进展[J]. 化工进展, 2019, 38(9): 4060-4074.
Jun ZHOU,Lei WU,Jingjing ZHOU,Kun LIANG,Yonghui SONG,Qiuli ZHANG,Yuhong TIAN. Advances in coal catalytic microwave pyrolysis and its carbon-based absorbing microwave catalysts[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4060-4074.
1 | BP statistical review of world energy[Z]. BP Company, June 2018. |
2 | 毛节华, 许惠龙 . 中国煤炭资源预测与评价[M]. 北京: 科学出版社, 1999. |
MAO Jiehua , XU Huilong . Predication and evaluation of coal resources in China[M]. Beijing: Science Press, 1999. | |
3 | 宋昌 . 洁净煤技术“科技领域云”项目规划与实践探索[R]. 北京: 中国科学院高能物理研究所, 2013. |
SONG Chang . Project planning and practical exploration of “science and technology cloud” for clean coal technology[R]. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences, 2013. | |
4 | 国际能源署 . 世界能源展望2018[R]. 北京: 国际能源署, 2019: 87-95. |
International Energy Agency . Outlook on world energy 2018[R]. Beijing: International Energy Agency, 2019: 87-95. | |
5 | ZHANG Yaning , CHEN Paul , LIU Shiyu , et al . Effects of feedstock characteristics on microwave-assisted pyrolysis—A review[J]. Bioresource Technology, 2017, 230: 143-151. |
6 | FENG Jie , XUE Xiaoyong , LI Xiaohong , et al . Products analysis of Shendong long-flame coal hydropyrolysis with iron-based catalysts[J]. Fuel Processing Technology, 2015, 130: 96-100. |
7 | YAN Binhan , CAO Chenxi , CHENG Yan , et al . Experimental investigation on coal devolatilization at high temperatures with different heating rates[J]. Fuel, 2014, 117: 1215-1222. |
8 | Zhichao MA , Xiaoxun MA , LUO Jincheng , et al . Catalytic hydropyrolysis of five Chinese coals[J]. Energy Fuels, 2012, 26(1): 511-517. |
9 | ZHOU Jun , YANG Zhe , WU Lei , et al . Comparative study on microwave co-pyrolysis products of low-rank coal under CH4 and N2 atmosphere[J]. 2015 International Conference on Chemical Engineering and Advanced Materials, 2014, 1033/1034: 142-145. |
10 | ED L, SAM K, CHRIS D , et al . The potential for rapid coke making using microwave energy[J]. Fuel, 2006, 85(14/15): 2057-2063. |
11 | VICTOR A , DUSHYANT S , MARK W S , et al . Microwave-assisted pyrolysis of Mississippi coal: a comparative study with conventional pyrolysis[J]. Fuel, 2018, 217: 656-667. |
12 | MARLAND S , MERCHANT A , ROWSON N . Dieletric properties of coal[J]. Fuel, 2001, 80: 1839-1849. |
13 | LIU Song , ZHANG Mingxu , XIA Hao . Study on carbocoal as microwave absorber in microwave field[J]. Advance Material Research, 2014, 1088: 721-725. |
14 | ZHU Ping , YU Zhengpeng , ZHANG Jinli , et al . Catalytic pyrolysis of bituminous coal under pyrolysis gas over a Ni/MgO catalyst[J]. Chemical Engineering Technology, 2017, 40(9): 1605-1610. |
15 | GONG Xiaomin , WANG Ze , LI Songgeng , et al . Coal pyrolysis in a laboratory-scale two-stage reactor: catalytic upgrading of pyrolytic vapors[J]. Chemical Engineering Technology, 2014, 37(12): 2135-2142. |
16 | USLU T , Ü ATALAY . Microwave heating of coal for enhanced magnetic removal of pyrite[J]. Fuel Processing Technology, 2003, 85: 21-29. |
17 | LIU Shiyu , ZHANG Yaning , FAN Liangliang , et al . Bio-oil production from sequential two step catalytic fast microwave[J]. Fuel, 2017, 196: 261-268. |
18 | XIE Qinglong , PENG Peng , LIU Shiyu , et al . Fast microwave-assisted catalytic pyrolysis of sewage sludge for bio-oil production[J]. Bioresource Technology, 2014, 172:162-168. |
19 | REGUERA E , DIAZ A C , YEE M H . On the changes and reactions in metal oxides under microwave irradiation[J]. Journal of Materials Science, 2005, 40(19): 5331-5334. |
20 | PARISA M M , MYTHILI R , WILLIAM R M , et al . The use of microwave heating for the pyrolysis of coal via inorganic receptors of microwave energy[J]. Fuel, 1992, 71: 716-717. |
21 | PARISA M M , MYTHILI R , WILLIAM R M , et al . Rapid microwave pyrolysis of coal: methodology and examination of the residual and volatile phases[J]. Fuel, 1995, 74: 20-27. |
22 | CHANG Y C , BORIS I K , ROBERT E L , et al . Electromagnetic enhancement of chemical reactions (devolatilization of char and coal)[J]. Fuel Science and Technology International, 1993,11(9): 1175-1202. |
23 | CHANG Y C , BORIS I K , ROBERT E L , et al . Reaction rate of microwave of coal in char bed[J]. Fuel Science and Technology International, 1993,11(9): 1269-1287. |
24 | RAJASEKHAR R B , VINU R . Microwave assisted pyrolysis of Indian and Indonesian coals and product characterization[J]. Fuel Processing Technology, 2016,154: 96-103. |
25 | RAJASEKHAR R B , VINU R . Microwave-assisted co-pyrolysis of high ash Indian coal and rice husk: product characterization and evidence of interactions[J]. Fuel Process Technology, 2018,178: 41-52. |
26 | FAISAL M , RAMLI M , FARID N A . Fuel production from microwave assisted pyrolysis of coal with carbon surfaces[J]. Energy Conversion and Management, 2016,110: 142-153. |
27 | KHADIM H , ZAHID H , Gulab HUSSAIN , et al . Production of fuel by co-pyrolysis of Makarwal coal and waste polypropylene through a hybrid heating system of convection and microwave[J]. International Journal of Energy Research, 2016, 40(11): 1532-1540. |
28 | 马红周, 王耀宁, 兰新哲 . 微波热解煤的实验研究[J]. 洁净煤技术, 2009, 15(4): 54-55. |
Hongzhou MA , WANG Yaoning , LAN Xinzhe . Study on lignite pyrogenation by microwave[J]. Cleaning Coal Technology, 2009, 15(4): 54-55. | |
29 | LIU Quanrun , XIA Hao . Effect of additive on temperature rising characteristics during coal pyrolysis in microwave field[J]. Advanced Materials Research, 2012, 512-515: 1790-1794. |
30 | 郝英轩, 刘全润, 李国亮 . 内蒙褐煤微波热解特性研究[J]. 煤炭转化, 2013, 36(4): 1-5. |
HAO Yingxuan , LIU Quanrun , LI Guoliang . Study on microwave induced pyrolysis of Inner Mongolia lignite[J]. Coal Conversion, 2013, 36(4): 1-5. | |
31 | 李国亮, 刘全润, 方小可, 等 . 神木煤-CH4微波共热解产物生成规律研究[J]. 煤炭转化, 2015, 38(4): 12-15. |
LI Guoliang , LIU Quanrun , FANG Xiaoke , et al . Study on product generating rule of Shenmu coal-CH4 microwave co-pyrolysis[J]. Coal Conversion, 2015, 38(4): 12-15. | |
32 | 李兆, 赵西成, 苗波波, 等 . 负载型Fe2O3/γ-Al2O3催化剂的制备及其对煤微波热解的催化活性[J]. 材料科学与工程学报, 2014, 32(6): 826-829. |
LI Zhao , ZHAO Xicheng , MIAO Bobo , et al . Preparation of supported Fe2O3/γ-Al2O3 catalyst and its performance in microwave pyrolysis of coal[J]. Journal of Materials Science & Engineering, 2014, 32(6): 826-829. | |
33 | 徐克, 江元汝, 李兆, 等 . NiO/γ-Al2O3的制备及对煤微波热解的影响[J]. 煤炭转化, 2014, 37(3): 20-23. |
XU Ke , JIANG Yuanru , LI Zhao , et al . Preparation of NiO/γ-Al2O3 and its performance in coal pyrolysis by microwave[J]. Coal Conversion, 2014, 37(3): 20-23. | |
34 | WANG Nan , YU Jianglong , ARASH T , et al . Experimental study on microwave pyrolysis of an Indonesian low-rank coal[J]. Energy & Fuels, 2014, 28(1): 254-263. |
35 | LIU Huanpeng , CHEN Taiping , LI Yang , et al . Temperature rise characteristics of Zhundong coal during microwave pyrolysis[J]. Fuel Processing Technology, 2016, 148: 317-323. |
36 | 刘淑琴, 张彦军, 张超凡, 等 . 吸波剂促进作用下褐煤微波热解特性[J]. 煤炭学报, 2017, 42(12): 3280-3285. |
LIU Shuqin , ZHANG Yanjun , ZHANG Chaofan , et al . Microwave assisted pyrolysis of lignite with microwave absorbers[J]. Journal of China Coal Society, 2017, 42(12): 3280-3285. | |
37 | LIU Shuqin , ZHANG Yanjun , Kaiyong TUO , et al . Structure, electrical conductivity, and dielectric properties of semi-coke derived from microwave-pyrolyzed low-rank coal[J]. Fuel Processing Technology, 2018,178: 139-147. |
38 | ZHAO Xiqiang , GUO Bingwen , WANG Wenlong , et al . Experimental study on microwave pyrolysis of three Chinese lignite[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124: 303-309. |
39 | ZHOU Fan , CHENG Jun , LIU Jianzhong , et al . Improving physicochemical properties of upgraded Indonesian lignite through microwave irradiation with char adsorbent[J]. Fuel, 2018, 218: 275-281. |
40 | 周军, 杨哲, 吴雷, 等 . H2气氛中低变质煤微波热解研究[J]. 煤炭转化, 2015, 38(3): 22-26. |
ZHOU Jun , YANG Zhe , WU Lei , et al . Study on microwave pyrolysis of low rank coal under H2 atmosphere[J]. Coal Conversion, 2015, 38(3): 22-26. | |
41 | 周军, 杨哲, 吴雷, 等 . CO2气氛中低变质煤微波热解研究[J]. 煤炭学报, 2015, 40(10): 2465-2471. |
ZHOU Jun , YANG Zhe , WU Lei , et al . Study on microwave pyrolysis of low rank coal under CO2 atmosphere[J]. Journal of China Coal Society, 2015, 40(10): 2465-2471. | |
42 | 周军, 杨哲, 刘晓峰, 等 . 低变质煤-循环煤气微波共热解研究[J]. 光谱学与光谱分析, 2016, 36(2): 459-465. |
ZHOU Jun , YANG Zhe , LIU Xiaofeng , et al . Study on microwave co-pyrolysis of low rank coal and circulating coal gas[J]. Spectroscopy and Spectral Analysis, 2016, 36(2): 459-465. | |
43 | 吴雷 . 不同气氛环境中低变质煤微波热解研究[D]. 西安: 西安建筑科技大学, 2014. |
WU Lei . Study on the microwave pyrolysis of the low rank coal under different environmental atmospheres[D]. Xi’an: Xi’an University of Architecture and Technology, 2014. | |
44 | 杨哲 . 煤-煤气微波强化催化共热解实验研究[D].西安: 西安建筑科技大学, 2016. |
YANG Zhe . Experimental study on coal-gas catalytic co-pyrolysis enhanced by microwave[D]. Xi’an: Xi’an University of Architecture and Technology, 2016. | |
45 | ZHOU Jun , CHEN Yunfei , WU Lei , et al . Effects of molybdenum disulfide on microwave pyrolysis of low-rank coal[J]. Energy & Fuels, 2017, 31: 6895-6902. |
46 | ZHOU Jun , WU Lei , LIANG Kun , et al . The synergistic mechanism on microwave and MoS2 in coal pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2018, 134: 580-589. |
47 | 陈家权, 廖子夙, 穆星宇 . 箱型多模式微波加热谐振腔的设计及电磁场分布研究[J]. 机械设计与制造, 2009(10): 21-23. |
CHEN Jiaquan , LIAO Zisu , MU Xingyu . Box shape multi-pattern microwave heater resonant cavity design and distribution of electromagnetic fields[J]. Machinery Design & Manufacture, 2009(10): 21-23. | |
48 | 段吉明, 王辅忠, 张慧春, 等 . 左手材料对谐振腔内部电磁场分布的影响[J]. 功能材料, 2017, 48(10): 10099-10103. |
DUAN Jiming , WANG Fuzhong , ZHANG Huichun , et al . The influence of LHM on the distribution of the electromagnetic field inside the cavity[J]. Functional Materials, 2017, 48(10): 10099-10103. | |
49 | SINGH S , NECULAES V B , LISSIANSKI V , et al . Microwave assisted coal conversion[J]. Fuel, 2015,140: 495-501. |
50 | LI Qing , NASIR M , ZHU Jinghan , et al . Graphene and its composites with nanoparticles for electrochemical energy applications[J]. Nano Today, 2014, 9(5): 668-683. |
51 | LIANG Xiaohui , LIU Wei , CHENG Yan , et al . Review: recent process in the design of carbon-based nanostructures with optimized electromagnetic properties[J]. Journal of Alloys and Compounds, 2018,749: 887-899. |
52 | 张彦军, 郑闰, 张超凡, 等 . 煤炭微波热解技术研究进展[J]. 煤炭科学技术, 2017, 45(12): 205-211. |
ZHANG Yanjun , ZHENG Run , ZHANG Chaofan , et al . A review of microwave pyrolysis technology of coal[J]. Coal Science and Technology, 2017, 45(12): 205-211. | |
53 | DING Xiao , HUANG Ying , LI Suping , et al . 3D architecture reduced graphene oxide-MoS2 composite: preparation and excellent electromagnetic wave absorption performance[J]. Composites: Part A, 2016, 90: 424-432. |
54 | QIANG Pong , DU Yunchen , WANG Ying , et al . Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption[J]. Carbon, 2016, 98: 566-606. |
55 | YAN Fanfan , ZONG Yan , ZHAO Chenjing , et al . Porous Co nanospheres supported on nitrogen-doped graphene as high-efficiency electromagnetic wave absorbers with thin thickness[J]. Journal of Alloys and Compounds, 2018,742: 928-936. |
56 | ZHANG Deqing , JIA Yixuan , CHENG Junye , et al . High-performance microwave absorption materials based on MoS2-graphene isomorphic hetero-structures[J]. Journal of Alloys and Compounds, 2018, 758: 62-71. |
57 | FENG Juan , ZONG Yan , SUN Yong , et al . Optimization of porous FeNi3/N-GN composites with superior microwave absorption performance[J]. Chemical Engineering Journal, 2018, 345: 441-451. |
58 | SHEN Wei , REN Biying , CAI Kai , et al . Synthesis of nonstoichiometric Co0.8Fe2.2O4/reduced graphene oxide(rGO) nanocomposites and their excellent electromagnetic wave absorption property[J]. Journal of Alloys and Compounds, 2019, 774: 997-1008. |
59 | Jafarian MOJTABA , SEYYED Salman Seyyed Afghahi, Atassi YOMEN , et al . Insights on the design of a novel multicomponent microwave absorber based on SrFe10Al2O19 and Ni0.5Fe2O4/MWCNTs/polyprrole[J]. Journal of Magnetism and Magnetic Materials, 2019, 471(6): 30-38. |
60 | HU Chenglong , LIU Haopeng , ZHANG Yanhui , et al . Tuning microwave absorption properties of multiwalled carbon nanotubes by surface functional groups[J]. Journal of Materials Science, 2019, 54(3): 2417-2426. |
61 | LI Wanxi , QI Hongxue , GUO Fang , et al . Co nanoparticles supported on cotton-based carbon fibers: a novel broadband microwave absorbent[J]. Journal of Alloys and Compounds, 2019, 772: 760-769. |
62 | Xiangyu JIE , XIAO Tiancun , YAO Benzhen , et al . On the performance optimization of Fe catalysts in microwave-assisted H2 production by the dehydrogenation of hexadecane[J]. Catalysis Today, 2018, 317(1): 29-35. |
63 | ROCK Keey Liew, Azwar ELFINA , PETER Nai Yyh, et al . Microwave pyrolysis with KOH/NaOH mixture activation: a new approach to produce micro-mesoporous activated carbon for textile dye adsorption[J]. Bioresource Technology, 2018, 266: 1-10. |
64 | LIEW R K ,AZWARE, YEK P N Y et al . Production of activated carbon as catalyst support by microwave pyrolysis of palm kernel shell: a comparative study of chemical versus physical activation[J]. Research on Chemical Intermediates, 2018, 44(6): 3849-3865. |
65 | DONG Qing , LI Huaju , NIU Miaomiao , et al . Microwave pyrolysis of moso bamboo for syngas production and bio-oil upgrading over bamboo-based biochar catalyst[J]. Bioresource Technology, 2018, 266: 284-290. |
66 | ZHANG Shuping , DONG Qing , ZHANG Li , et al . High quality syngas production from microwave pyrolysis of rice husk with char-supported metallic catalysts[J]. Bioresource Technology, 2015, 191: 17-23. |
67 | TAMAS V , GERGO B , LIVIA V , et al . Co4N/nitrogen-doped graphene: a non-noble metal oxygen reduction electrocatalyst for alkaline fuel cells[J]. Applied Catalysis B: Environmental, 2018, 237: 826-834. |
68 | ZOU Tao , YI Qingfeng , ZHANG Yuanyuan , et al . Electroactivities of Pd/Fe3O4-C catalysts for electro-oxidation of methanol, ethanol and propanol[J]. Journal of Electrochemistry, 2017, 23(6): 709-716. |
69 | MU Xue , XU Zhaoquan , XIE Yahong , et al . Pt nanoparticles supported on Co embedded coal-based carbon nanofiber for enhanced electrocatalytic activity towards methanol electro-oxidation[J]. Journal of Alloys and Compounds, 2017, 711: 374-380. |
70 | HAN Jiangze , WANG Xingdong , YUE Junrong , et al . Catalytic upgrading of coal pyrolysis tar over char-based catalysts[J]. Fuel Processing Technology, 2014, 122: 98-106. |
71 | YANG Jingbiao , CAI Ningsheng . A TG-FTIR study on catalytic pyrolysis of coal[J]. Journal of Fuel Chemistry and Technology, 2006, 34(6): 650-654. |
72 | Zhichao MA , Xiaoxun MA , LUO Jincheng , et al . Catalytic hydropyrolysis of five Chinese coals[J]. Energy & Fuels, 2012, 26: 511-517. |
73 | 张穗穗, 李刚, 闵小建, 等 . M x O y /USY双功能催化剂对神东煤的快速热解产物的调控[J]. 化工进展, 2018, 37(8): 3029-3037. |
ZHANG Suisui , LI Gang , MIN Xiaojian , et al . Regulation of the rapid pyrolysis products of Shendong coal by M x O y /USY bifunctional catalyst[J]. Chemical Industry and Engineering Progress, 2018, 37(8): 3029-3037. | |
74 | YAN Shuai , ZHANG Jianshu , YAN Xiaoqiang , et al . Catalytic coal hydrogasification by cobalt-calcium catalyst in a pressurized fluidized bed: role of hydropyrolysis and catalysis process[J]. Journal of Analytical and Applied Pyrolysis, 2018, 135: 251-259. |
75 | XU Bang , KUANG Dongyang , LIU Fangjing , et al . Characterization of powder river basin coal pyrolysis with cost-effective and environmentally-friendly composite Na-Fe catalysts in a thermogravimetric analyzer and a fixed-bed reactor[J]. International Journal of Hydrogen Energy, 2018, 43(14): 6918-6935. |
76 | Tsubouchi NAOTO , Mochizuki YUUKI , Shinohare YUJI , et al . Catalytic effect of ion-exchanged calcium on steam gasification of low-rank coal with a circulating fluidized bed reactor[J]. Fuel, 2018, 234: 406-413. |
77 | SONG Jianbo , ZHANG Haijun , WANG Junkai , et al . High-yield production of large aspect ratio carbon nanotubes via catalytic pyrolysis of cheap coal tar pitch[J]. Carbon, 2018, 130: 701-713. |
78 | LIU Yun , GUAN Yanjun , ZHANG Kai . Na2CO3 catalyzed CO2 gasification of coal char and its intermediate complexes[J]. Research on Chemical Intermediates, 2018, 44(12): 7789-7803. |
79 | YU Ying , YU Junqing , SUN Bing , et al . Influence of catalyst types on the microwave-induced pyrolysis of sewage sludge[J]. Journal of Analytical and Applied Pyrolysis, 2014, 106:86-91. |
80 | 陈浩, 左薇, 张军, 等 . 镍基催化剂对污泥微波热解制生物气效能的影响[J]. 环境工程学院, 2014, 8(3): 1150-1156. |
CHEN Hao , ZUO Wei , ZHANG Jun , et al . Impact pf nickel-based catalyst on biosyngas performance produced by microwave-induced catalytic pyrolysis of sludge[J]. Chinese Journal of Environmental Engineering, 2014, 8(3): 1150-1156. | |
81 | XIE Qinglong , FERNANDA C B , CHENG Yanling , et al . Fast microwave-assisted catalytic gasification of biomass for syngas production and tar removal[J]. Bioresource Technology, 2014, 156: 291-296. |
82 | LIU Haili , Xiaoqian MA , LI Longjun , et al . The catalytic pyrolysis of food waster by microwave heating[J]. Bioresource Technology, 2014, 166: 45-50. |
83 | NIU Xianjun , GAO Jie , MIAO Qing , et al . Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics[J]. Microporous and Mesoporous Materials, 2014, 197: 252-261. |
84 | JIANG Xin , WANG Ting . Influence of preparation method on morphology and photocatalysis activity of nanostructured TiO2 [J]. Environmental Science & Technology, 2007, 41(12): 4441-4446. |
85 | SHEN Jianping , SONG Chunshan . Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells[J]. Catalysis Today, 2002, 77(1): 89-98. |
86 | Lefevre MICHEL , Proietti ERIC , Jaouen FREDERIC , et al . Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells[J]. Science, 2009, 324(5923): 71-74. |
87 | Proietti ERIC , Jaouen FREDERIC , Lefevre MICHEL , et al . Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells[J]. Nature Communications, 2011, 2: 416. |
88 | YANG Erqi , QI Xiaosi , XIE Ren , et al . Novel “203” type of heterostructured MoS2-Fe3O4-C ternary nanohybrid: synthesis, and enhanced microwave absorption properties[J]. Applied Surface Science, 2018, 442: 622-629. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[7] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[8] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[9] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[10] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[11] | 耿源泽, 周俊虎, 张天佑, 朱晓宇, 杨卫娟. 部分填充床燃烧器中庚烷均相/异相耦合燃烧[J]. 化工进展, 2023, 42(9): 4514-4521. |
[12] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[13] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[14] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[15] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |