化工进展 ›› 2019, Vol. 38 ›› Issue (11): 5048-5056.DOI: 10.16085/j.issn.1000-6613.2019-0707
收稿日期:
2019-05-04
出版日期:
2019-11-05
发布日期:
2019-11-05
通讯作者:
黄荣斌
作者简介:
欧阳杰(1993—)男,硕士研究生,研究方向为纳米金属催化。E-mail:基金资助:
Jie OUYANG(),Wenxian ZHU,Xiaohui ZHANG,Huadong TANG,Rongbin HUANG()
Received:
2019-05-04
Online:
2019-11-05
Published:
2019-11-05
Contact:
Rongbin HUANG
摘要:
以醋酸钯为前体、有机氢硅烷为还原剂开发了一种简单温和的疏水性钯纳米颗粒制备方法。通过调节前体、保护剂和还原剂的配比,在氯仿溶液中室温条件下合成了疏水性的钯纳米团簇和钯纳米球。运用透射电子显微镜(TEM)、X射线衍射(XRD)、光学接触角测试仪、循环伏安法(CV)、表面增强拉曼光谱(SERS)对这两种钯纳米材料进行了测试表征。TEM观察表明这两种钯纳米材料粒径分布均匀,分散性良好。接触角测试表明钯纳米团簇与钯纳米球均具有疏水性。CV测定结果显示这两种钯纳米材料具有良好的电催化稳定性,钯纳米团簇比钯纳米球对乙醇氧化具有更突出的电催化性能,表明钯纳米团簇结构稳定并具有更大的比表面积。SERS测试表明钯纳米团簇是一种优良的疏水性表面增强拉曼散射基底,利用这种基底对疏水性致癌物3,4-苯并芘和联苯胺进行了SERS快速检测,检测限为0.1mg/mL。
中图分类号:
欧阳杰,朱文仙,张小会,唐华东,黄荣斌. 疏水性钯纳米团簇的合成及其作为表面增强拉曼散射基底的应用[J]. 化工进展, 2019, 38(11): 5048-5056.
Jie OUYANG,Wenxian ZHU,Xiaohui ZHANG,Huadong TANG,Rongbin HUANG. Synthesis of hydrophobic palladium nanocluster and its application as a substrate for surface enhanced raman scattering[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 5048-5056.
1 | 徐国财. 纳米科技导论[M]. 北京: 高等教育出版社, 2005: 368. |
XUGuocai. Introduction to nanoscience and technology[M]. Beijing: High Education Press, 2005: 368. | |
2 | WANGF, NIUX, WANGW, et al. Green synthesis of Pd nanoparticles via extracted polysaccharide applied to glucose detection[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93: 87-93. |
3 | SUNX, ARIZAP, ORTIZM, et al. Long-term atomistic simulation of hydrogen absorption in palladium nanocubes using a diffusive molecular dynamics method[J]. International Journal of Hydrogen Energy, 2018, 43(11): 5657-5667. |
4 | 李雪, 张伊放, 齐卫宏, 等. 纳米储氢合金[J]. 化学进展, 2013, 25(7): 1122-1130. |
LIXue, ZHANGYifang, QIWeihong, et al. Hydrogen storage nanoalloys[J]. Progress in Chemistry, 2013, 25(7): 1122-1130. | |
5 | PUGAZHENDHIA, SHOBANAS, NGUYEND D, et al. Application of nanotechnology (nanoparticles) in dark fermentative hydrogen production[J]. International Journal of Hydrogen Energy, 2019, 44(3): 1431-1440. |
6 | FONTESE H, RAMOSC E D, NANDENHAJ, et al. Structural analysis of PdRh/C and PdSn/C and its use as electrocatalysts for ethanol oxidation in alkaline medium[J]. International Journal of Hydrogen Energy, 2018, 44(2): 937-951. |
7 | LIH, ZHANGY, WANQ, et al. Expanded graphite and carbon nanotube supported palladium nanoparticles for electrocatalytic oxidation of liquid fuels[J]. Carbon, 2018, 131: 111-119. |
8 | 杨小勇, 钱浩. 高分子负载钯催化Suzuki反应的研究进展[J]. 化学工程与装备, 2013 (7): 144-149. |
YANGXiaoyong, QIANHao. Progress in suzuki reaction catalyzed by polymer-supported palladium[J]. Chemical Engineering & Equipment, 2013 (7): 144-149. | |
9 | 牛志强. 钯、铂纳米晶的调控合成与催化性能研究[D]. 北京: 清华大学, 2012. |
NIUZhiqiang. Controlled synthesis and catalytic study of palladium and platinum nanocrystals[D]. Beijing: Tsinghua University, 2012. | |
10 | REVATHYT A, DHANAVELS, SIVARANJANIT, et al. Highly active graphene-supported palladium-nickel alloy nanoparticles for catalytic reduction of 4-nitrophenol[J]. Applied Surface Science, 2018, 449: 764-771. |
11 | AYESHA I, THAKERS, QAMHIEHN, et al. Size-controlled Pd nanocluster grown by plasma gas-condensation method[J]. Journal of Nanoparticle Research, 2011, 13(3): 1125-1131. |
12 | 郭志岩, 刘军刚, 杜芳林, 等. 氢电弧等离子体法制备纳米钯粒子及形成过程分析[J]. 青岛科技大学学报(自然科学版), 2005, 26(2): 140-142. |
GUOZhiyan, LIUJungang, DUFanglin, et al. Preparation and analysis of Pd nanoparticles by H2+He Arc plasma method[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2005, 26(2): 140-142. | |
13 | 赵宏宾, 熊国兴, BRUNNERH, 等. 应用等离子体溅射方法制备钯-银合金复合膜及其膜表征[J]. 中国科学, 1999, 29(2): 174-180. |
ZHAOHongbin, XIONGGuoxing, BRUNNERH, et al. Pd-Ag alloy composite films prepared by plasma sputtering and their characterization[J]. Scientia Sinica, 1999, 29(2): 174-180. | |
14 | 卫英慧. 纳米材料概论[M]. 北京: 化学工业出版社, 2009: 260. |
WEIYinghui. Introduction to nanomaterials[M]. Beijing: Chemical Industry Press, 2009: 260. | |
15 | AYMONIERC, BORTZMEYERD, THOMANNR, et al. Poly(methyl methacrylate)/palladium nanocomposites: synthesis and characterization of the morphological, thermomechanical, and thermal properties[J]. Chemistry of Materials, 2003, 15(25): 4874-4878. |
16 | MEHTAS K, GUPTAS. Time-efficient microwave synthesis of Pd nanoparticles and their electrocatalytic property in oxidation of formic acid and alcohols in alkaline media[J]. Journal of Applied Electrochemistry, 2011, 41(12): 1407-1417. |
17 | 王艳丽, 谭德新, 徐国财, 等. 不使用保护气氛和还原剂超声制备纳米钯颗粒[J]. 材料研究学报, 2007, 21(3): 329-332. |
WANGYanli, TANDexin, XUGuocai, et al. Sonochemical preparation of Pd nanoparticles without gas protection and reductant[J]. Chinese Journal of Materials Research, 2007, 21(3): 329-332. | |
18 | BASAKD, KARANS, MALLIKB. Size selective photoluminescence in poly(methyl methacrylate) thin solid films with dispersed silver nanoparticles synthesized by a novel method[J]. Chemical Physics Letters, 2006, 420(1/2/3): 115-119. |
19 | ABYANEHM K, PASRICHAR, GOSAVIS W, et al. Thermally assisted semiconductor-like to insulator transition in gold–poly(methyl methacrylate) nanocomposites[J]. Nanotechnology, 2006, 17(16): 4129-4134. |
20 | CHANY N C, CRAIGG S W, SCHROCKR R, et al. Synthesis of palladium and platinum nanoclusters within microphase-separated diblock copolymers[J]. Chemistry of Materials, 1992, 4(1): 24-27. |
21 | NGUYENV L, NGUYEND C, HIRATAH, et al. Chemical synthesis and characterization of palladium nanoparticles[J]. Journal of Nuclear Materials, 2010, 383(3): 231-236. |
22 | NEMAMCHAA, REHSPRINGERJ L, KHATMID. Synthesis of palladium nanoparticles by sonochemical reduction of palladium(Ⅱ) nitrate in aqueous solution[J]. The Journal of Physical Chemistry B, 2006, 110(1): 383-387. |
23 | ROY P S, BAGCHIJ, BHATTACHARYAS K. Size-controlled synthesis and characterization of polyvinyl alcohol coated palladium nanoparticles[J]. Transition Metal Chemistry, 2009, 34(4): 447-453. |
24 | NIUW X, ZHANGL, XUG B. Shape-controlled synthesis of single-crystalline palladium nanocrystals[J]. ACS Nano, 2010, 4(4): 1987-1996. |
25 | JAMESC. The preparation of palladium nanoparticles[J]. Platinum Metals Review, 2012, 56(2): 83-98. |
26 | MEHTAS K, GUPTAS. Time-efficient microwave synthesis of Pd nanoparticles and their electrocatalytic property in oxidation of formic acid and alcohols in alkaline media[J]. Journal of Applied Electrochemistry, 2011, 41(12): 1407-1417. |
27 | 张明波. 等离子体处理炭载贵金属催化剂及其应用[D]. 天津: 天津大学, 2008. |
ZHANGMingbo. Plasma treated carbon supported noble metal catalyst and its application[D]. Tianjin: Tianjin University, 2008. | |
28 | 纪镁铃, 王惠璇, 洪露薇, 等. 生物还原法制备Pd/TiO2光催化剂[J]. 化学反应工程与工艺, 2008, 24(5): 400-404. |
JIMeiling, WANGHuixuan, HONGLuwei, et al. Preparation of Pd/TiO2 photocatalysts by a bioreduction method[J]. Chemical Reaction Engineering And Technology, 2008, 24(5): 400-404. | |
29 | FLEISCHMANNM, HENDRAP J, MCQUILLANA J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 1974, 26(2): 163-166. |
30 | JEANMAIRED L, DUYNER P V, JEANMAIRED L, et al. Surface raman spectroelectrochemistry: Part Ⅰ. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J]. Journal of Electroanalytical Chemistry & Interfacial Electrochemistry, 1977, 84(1): 1-20. |
31 | LUL Q, ZHENGY, QUW G, et al. Hydrophobic teflon films as concentrators for single-molecule SERS detection[J]. Journal of Materials Chemistry, 2012, 22(39): 20986-20990. |
32 | TIANZ Q, RENB. Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy[J]. Annual Review of Physical Chemistry, 2004, 55(1): 197-229. |
33 | XIONGY, MCLELLANJ M, CHENJ, et al. Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties[J]. Journal of the American Chemical Society, 2005, 127(48): 17118-17127. |
34 | HUJ, FENGX, LIUY, et al. Shape-controlled synthesis and application in surface-enhanced Raman scattering of novel palladium nanoparticles[J]. Materials Letters, 2010, 64(3): 422-424. |
35 | DINGS Y, YIJ, LIJ F, et al. Erratum: nanostructure-based plasmon-enhanced raman spectroscopy for surface analysis of materials[J]. Nature Reviews Materials, 2016, 1: 16021. |
36 | 赵万利, 王贺陶, 刘琨, 等. 基于“热点”效应的表面增强拉曼散射光谱研究[J]. 光散射学报, 2008, 20(1): 13-16. |
ZHAOWanli, WANGHetao, LIUKun, et al. Surface-enhanced raman spectrum based on the “hot-spots” effect[J]. The Journal of Light Scattering, 2008, 20(1): 13-16. | |
37 | CHENH Y, LINM H, WANGC Y, et al. Large-scale hot spot engineering for quantitative SERS at the single-molecule scale[J]. Journal of the American Chemical Society, 2016, 137(42): 13698-13705. |
38 | NIE, S, EMORYS R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 1997, 275(5303): 1102-1106. |
39 | 孙丽枝, 易清风, 刘小平, 等. 钯纳米颗粒的制备及对乙醇氧化的电活性[J]. 化工新型材料, 2013, 41(8): 56-58. |
SUNLizhi, YIQingfeng, LIUXiaoping, et al. Preparation of palladium nanoparticles[J]. New Chemical Materials, 2013, 41(8): 56-58. | |
40 | 杨有铭, 阮伟东, 宋薇, 等. 表面增强拉曼光谱检测联苯胺[J]. 高等学校化学学报, 2012, 33(10): 2191-2194. |
YANGYouming, RUANWeidong, SONGWei, et al. Trace benzidine detection by surface enhanced Raman spectroscopy[J]. Chemical Journal of Chinese Universities, 2012, 33(10): 2191-2194. | |
41 | ONCHOKEK K, HADADC M, DUTTAP K. Structure and vibrational spectra of mononitrated benzo(a)pyrenes[J]. Journal of Physical Chemistry A, 2006, 110(1): 76-84. |
42 | 韩颖, 郭明, 魏艳玲, 等. 苯并(a)芘的拉曼光谱计算及分析[J]. 吉林化工学院学报, 2012, 29(7): 9-12. |
HANYing, GUOMing, WEIYanling, et al. Calculation and analysis for Raman spectroscopy of benzo(a)pyrene[J]. Journal of Jilin Institute of Chemical Technology, 2012, 29(7): 9-12. |
[1] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[2] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[3] | 赵巍, 赵德银, 李世瀚, 刘洪达, 孙进, 郭艳秋. 三嗪型天然气管道缓蚀型减阻剂合成与应用[J]. 化工进展, 2023, 42(S1): 391-399. |
[4] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[5] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[6] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[7] | 王帅旗, 王从新, 王学林, 田志坚. 无溶剂快速合成ZSM-12分子筛[J]. 化工进展, 2023, 42(7): 3561-3571. |
[8] | 余希希, 张金帅, 雷文, 刘承果. 基于动态共价键自修复的光固化高分子材料研究进展[J]. 化工进展, 2023, 42(7): 3589-3599. |
[9] | 王知彩, 刘伟伟, 周璁, 潘春秀, 闫洪雷, 李占库, 颜井冲, 任世彪, 雷智平, 水恒福. 基于煤基腐殖酸的高效减水剂合成与性能表征[J]. 化工进展, 2023, 42(7): 3634-3642. |
[10] | 陈森, 殷鹏远, 杨证禄, 莫一鸣, 崔希利, 锁显, 邢华斌. 功能固体材料智能合成研究进展[J]. 化工进展, 2023, 42(7): 3340-3348. |
[11] | 刘宇龙, 姚俊虎, 舒闯闯, 佘跃惠. 磁性Fe3O4纳米颗粒的生物合成及其在提高采收率中的应用[J]. 化工进展, 2023, 42(5): 2464-2474. |
[12] | 郭朋举, 何小波, 银凤翔. 电催化氮还原合成氨MOF基催化剂研究进展[J]. 化工进展, 2023, 42(4): 1797-1810. |
[13] | 李玲, 马超峰, 卢春山, 于万金, 石能富, 金佳敏, 张建君, 刘武灿, 李小年. 新型含氟替代品1,1,2-三氟乙烯的合成工艺与催化剂研究进展[J]. 化工进展, 2023, 42(4): 1822-1831. |
[14] | 阮鹏, 杨润农, 林梓荣, 孙永明. 甲烷催化部分氧化制合成气催化剂的研究进展[J]. 化工进展, 2023, 42(4): 1832-1846. |
[15] | 田园, 娄舒洁, 孟闪茹, 闫敬如, 肖海成. 合成气制高碳醇钴基催化剂研究进展[J]. 化工进展, 2023, 42(4): 1869-1876. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |