1 |
蒲嘉懿 . 金属有机骨架材料衍生物活化过一硫酸氢钾降解水体中污染物[D]. 广州: 华南理工大学, 2017.
|
|
PU J Y . Metal organic framework derivatives activate peroxymonosulfate to degrade pollutants in water[D]. Guangzhou: South China University of Technology, 2017.
|
2 |
LIANG C , HUANG C F , CHEN Y J . Potential for activated persulfate degradation of BTEX contamination[J]. Water Research, 2008, 42(15): 4091-4100.
|
3 |
周宁 . 超声/过硫酸盐法去除水中卡马西平及腐殖酸的研究[D]. 武汉: 华中科技大学, 2015.
|
|
ZHOU N . Study on the degradation of carbamazepine and humic acid in water using ultrasonic combined with persulfate method[D]. Wuhan: Huazhong University of Science and Technology, 2015.
|
4 |
徐朋飞, 郭怡秦, 王光辉, 等 . 紫外活化过硫酸盐对甲基橙脱色处理实验研究[J]. 环境工程, 2017, 35(11): 58-60,80.
|
|
XU P F , GUO Y Q , WANG G H , et al . Experrimental study on UV-activated persulfate for decolorization of methyl orange wastewater[J]. Environmental Engineering, 2017, 35(11): 58-60,80.
|
5 |
董紫君, 张茜, 代威力, 等 . 热活化过硫酸盐体系中碘离子的转化分析[J]. 中国给水排水, 2018, 34(15): 55-58,63.
|
|
DONG Z J , ZHANG X , DAI W L , et al . Analysis on transformation of iodide in thermoactivated persulfate system[J]. China Water & Wastewater, 2018, 34(15): 55-58,63.
|
6 |
YAN J , LEI M , ZHU L , et al . Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1398-1404.
|
7 |
KAKAVANDI B . Heterogeneous Fenton-like catalytic oxidation of tetracycline by AC@Fe3O4 as a heterogeneous persulfate activator: adsorption and degradation studies[J]. Journal of Industrial & Engineering Chemistry, 2016, 45: 323-333.
|
8 |
MA Q , ZHANG X , GUO R , et al . Persulfate activation by magnetic -Fe2O3/Mn3O4 nanocomposites for degradation of organic pollutants[J]. Separation & Purification Technology, 2018, 210: 335-342.
|
9 |
CHEN L , ZUO X , YANG S , et al . Rational design and synthesis of hollow Co3O4@Fe2O3 core-shell nanostructure for the catalytic degradation of norfloxacin by coupling with peroxymonosulfate[J]. Chemical Engineering Journal, 2019, 359: 373-384.
|
10 |
RAMOS M A V , YAN W , LI X Q , et al . Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core-shell structure[J]. Journal of Physical Chemistry C, 2009, 113(33): 14591-14594.
|
11 |
BETTERTON E A , HOFFMANN M R . Kinetics and mechanism of the oxidation of aqueous hydrogen sulfide by peroxymonosulfate[J]. Environmental Science & Technology, 1990, 24(12): 1819-1824.
|
12 |
GÁBOR L , JÓZSEF K , ZSUZSA B , et al . One-versus two-electron oxidation with peroxomonosulfate ion: reactions with iron(Ⅱ), vanadium(Ⅳ), halide ions, and photoreaction with cerium(Ⅲ)[J]. Inorganic Chemistry, 2009, 48(4): 1763-1773.
|
13 |
丁耀彬 . 基于过渡金属氧化物催化活化过一硫酸盐高级氧化方法及其在有机污染物降解中的应用[D]. 武汉: 华中科技大学, 2013.
|
|
DING Y B . Advanced oxidation technology based on activation of peroxymonosulfate by transition metal oxides for degradation of organic pollutants[D]. Wuhan: Huazhong University of Science and Technology, 2013.
|
14 |
SHARMA S B , MUDALIAR M , RAO B , et al . Radiation chemical oxidation of benzaldehyde, acetophenone, and benzophenone[J]. Journal of Physical Chemistry A, 1997, 101(45): 8402-8408.
|
15 |
FORSEY S . In situ chemical oxidation of creosote/coal tar residuals: experimental and numerical investigation[J]. Archives Roumaines de Pathologie Expérimentales et de Microbiologie, 2004, 28(2): 557-562.
|
16 |
LIANG C J , SU H . Identification of sulfate and hydroxyl radicals in thermally activated persulfate[J]. Industrial & Engineering Chemistry Research, 2009, 48(11): 472-475.
|
17 |
CLIFTON C L , HUIE R E . Rate constants for hydrogen abstraction reactions of the sulfate radical, SO4 -· alcohols[J]. International Journal of Chemical Kinetics, 1989, 21(8): 677-687.
|
18 |
PADMAJA S , ALFASSI Z B , NETA P , et al . Rate constants for reactions of SO4 -· radicals in acetonitrile[J]. International Journal of Chemical Kinetics, 1993, 25(3): 193-198.
|
19 |
HUANG K C , ZHAO Z , HOAG G E , et al . Degradation of volatile organic compounds with thermally activated persulfate oxidation[J]. Chemosphere, 2005, 61(4): 551-560.
|
20 |
HU L , DENG G , LU W , et al . Peroxymonosulfate activation by Mn3O4/metal-organic framework for degradation of refractory aqueous organic pollutant Rhodamine B[J]. Chinese Journal of Catalysis, 2017, 38(8): 1360-1372.
|
21 |
ZENG T , ZHANG X , WANG S , et al . Spatial confinement of a Co3O4 catalyst in hollow metal-organic frameworks as a nanoreactor for improved degradation of organic pollutants[J]. Environmental Science & Technology, 2015, 49(4): 2350-2357.
|
22 |
LIN K Y , CHANG H A . Zeolitic imidazole framework-67(ZIF-67) as a heterogeneous catalyst to activate peroxymonosulfate for degradation of Rhodamine B in water[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 53: 40-45.
|
23 |
PU M , MA Y , WAN J , et al . Activation performance and mechanism of a novel heterogeneous persulfate catalyst: metal organic framework MIL-53(Fe) with Fe(Ⅱ)/Fe(Ⅲ) mixed-valence coordinative unsaturated iron center[J]. Catalysis Science & Technology, 2017, 7(5): 1129-1140.
|
24 |
PU M , GUAN Z , MA Y , et al . Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of orange G in aqueous solution[J]. Applied Catalysis A: General, 2018, 549: 82-92.
|
25 |
WANG M , YANG L , GUO C , et al . Bimetallic Fe/Ti-based metal-organic framework for persulfate-assisted visible light photocatalytic degradation of orange Ⅱ[J]. Chemistry Select, 2018, 3(13): 3664-3674.
|
26 |
LI H , WAN J , MA Y , et al . Degradation of refractory dibutyl phthalate by peroxymonosulfate activated with novel catalysts cobalt metal-organic frameworks: mechanism, performance, and stability[J]. Journal of Hazardous Materials, 2016, 318: 154-163.
|
27 |
YANG Q , CHOI H , ALABED S R , et al . Iron-cobalt mixed oxide nanocatalysts: heterogeneous peroxymonosulfate activation, cobalt leaching, and ferromagnetic properties for environmental applications[J]. Applied Catalysis B: Environmental, 2009, 88(3): 462-469.
|
28 |
BHATTACHARJEE S , CHOI J S , YANG S T , et al . Solvothermal synthesis of Fe-MOF-74 and its catalytic properties in phenol hydroxylation[J]. Journal of nanoscience and nanotechnology, 2010, 10(1): 135-141.
|
29 |
AI L , ZHANG C , LI L , et al . Iron terephthalate metal-organic framework: revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation[J]. Applied Catalysis B: Environmental, 2014, 148/149: 191-200.
|
30 |
DU J J , YUAN Y P , SUN J X , et al . New photocatalysts based on MIL-53 metal–organic frameworks for the decolorization of methylene blue dye[J]. Journal of Hazardous Materials, 2011, 190(1): 945-951.
|
31 |
MEI W , LI D , XU H , et al . Effect of electronic migration of MIL-53(Fe) on the activation of peroxymonosulfate under visible light[J]. Chemical Physics Letters, 2018, 706: 694-701.
|
32 |
GAO Y , LI S , LI Y , et al . Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate[J]. Applied Catalysis B: Environmental, 2017, 202: 165-174.
|
33 |
LIN K Y , CHANG H A , HSU C J . Iron-based metal organic framework, MIL-88A, as a heterogeneous persulfate catalyst for decolorization of Rhodamine B in water[J]. RSC Advances, 2015, 5(41): 32520-32530.
|