化工进展 ›› 2019, Vol. 38 ›› Issue (04): 1634-1645.DOI: 10.16085/j.issn.1000-6613.2018-0756
收稿日期:
2018-04-11
修回日期:
2018-05-25
出版日期:
2019-04-05
发布日期:
2019-04-05
通讯作者:
陈国华
作者简介:
<named-content content-type="corresp-name">胡昆</named-content>(1993—),男,博士研究生,研究方向为工业安全与风险评价技术。E-mail:<email>13533227907@163.com</email>。|陈国华,教授,博士生导师,研究方向为工业安全与风险评价技术、过程装备安全可靠性及风险评价技术。E-mail:<email>mmghchen@126.com</email>。
基金资助:
Kun HU(),Guohua CHEN(),Zhihang ZHOU,Kongxing HUANG
Received:
2018-04-11
Revised:
2018-05-25
Online:
2019-04-05
Published:
2019-04-05
Contact:
Guohua CHEN
摘要:
爆炸冲击波是导致化工园区多米诺效应事故升级的重要原因之一。在文献分析的基础上,本文从爆炸冲击波强度表征、化工设备破坏失效的动力响应、破坏失效概率计算方法、易损性分析等4个方面,指出目前爆炸冲击波作用下化工设备易损性研究存在的不足,进而提出了进一步研究方向,包括不同爆炸类型的超压时程曲线特征与能量频谱规律研究、空间分布参数模型或集中参数模型的定量研究、基于结构可靠性的破坏失效概率计算方法、爆炸冲击波强度参数与设备抗性参数的易损性分析等,在此基础上系统性建立了爆炸冲击波作用下化工设备易损性研究的流程图,指出集中参数的可靠性方法与随机有限元法是爆炸冲击波作用下化工设备易损性研究的关键性方向,为提高爆炸冲击波多米诺效应定量风险评估的可靠度与精确度提供参考。
中图分类号:
胡昆, 陈国华, 周志航, 黄孔星. 爆炸冲击波作用下化工设备易损性研究评述[J]. 化工进展, 2019, 38(04): 1634-1645.
Kun HU, Guohua CHEN, Zhihang ZHOU, Kongxing HUANG. Review of the vulnerability of chemical equipment subjected to blast wave[J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1634-1645.
初始事故场景 | 事故升级因素 | 可能产生的二级事故场景 |
---|---|---|
VCE | 火灾热辐射,爆炸冲击波 | 池火灾,喷射火,火球,闪火,机械爆炸、约束爆炸、BLEVE、VCE、有害介质泄漏 |
BLEVE | 碎片,爆炸冲击波 | |
约束爆炸 | 爆炸冲击波 | |
机械爆炸 | 碎片,爆炸冲击波 | |
凝聚相爆炸 | 爆炸冲击波 |
表1 不同爆炸类型引发多米诺效应事故升级的因素及可能产生的二级事故场景
初始事故场景 | 事故升级因素 | 可能产生的二级事故场景 |
---|---|---|
VCE | 火灾热辐射,爆炸冲击波 | 池火灾,喷射火,火球,闪火,机械爆炸、约束爆炸、BLEVE、VCE、有害介质泄漏 |
BLEVE | 碎片,爆炸冲击波 | |
约束爆炸 | 爆炸冲击波 | |
机械爆炸 | 碎片,爆炸冲击波 | |
凝聚相爆炸 | 爆炸冲击波 |
方法 | 计算过程 | 特征 |
---|---|---|
TNT当量法 | ① | ①爆源形状:点源 ②需要确定的参数:W f、α、Q f、R ③结果:峰值超压p s、冲量i s ④适用条件:仅适用于远场预测 |
TNO多能法 | ① | ①爆源形状:半球形对称蒸气云 ②需要确定的参数:E、R、爆源体积、爆源强度[ ③结果:峰值超压p s、正相持续时间t + ④以爆源强度等级选取TNO曲线 ⑤适用条件:近场、远场预测均可 |
Baker-Strehlow法 | ① | ①爆源形状:球形对称蒸气云 ②需要确定的参数:E、R、爆源体积、最大火焰传播速度-马赫数Ma [ ③结果:峰值超压p s、冲量i s ④以马赫数Ma等级选取Baker-Strehlow曲线 ⑤适用条件:近场、远场预测均可 |
表2 TNT当量法、TNO多能法、Baker-Strehlow法的对比分析
方法 | 计算过程 | 特征 |
---|---|---|
TNT当量法 | ① | ①爆源形状:点源 ②需要确定的参数:W f、α、Q f、R ③结果:峰值超压p s、冲量i s ④适用条件:仅适用于远场预测 |
TNO多能法 | ① | ①爆源形状:半球形对称蒸气云 ②需要确定的参数:E、R、爆源体积、爆源强度[ ③结果:峰值超压p s、正相持续时间t + ④以爆源强度等级选取TNO曲线 ⑤适用条件:近场、远场预测均可 |
Baker-Strehlow法 | ① | ①爆源形状:球形对称蒸气云 ②需要确定的参数:E、R、爆源体积、最大火焰传播速度-马赫数Ma [ ③结果:峰值超压p s、冲量i s ④以马赫数Ma等级选取Baker-Strehlow曲线 ⑤适用条件:近场、远场预测均可 |
学者 | TNT当量法的当量系数α | TNO多能法的爆源强度 | Baker-Strehlow法的马赫数Ma | 超压预测结果 |
---|---|---|---|---|
Lobato等[ | 0.1 | 10 | 0.59 | 当距离爆源较近时,预测结果大小顺序为:TNT当量法> TNO多能法>Baker-Strehlow法;当距离爆源较远时,3种方法预测结果相近 |
Sari[ | — | 10 | 5.2 | 当距离爆源较近时,预测结果大小顺序为:TNO多能法>Baker-Strehlow法;当距离爆源较远时,两种方法预测结果相近 |
张网等[ | 0.1 | 5 | 0.25 | 当距离爆源较近时,预测结果大小顺序为:TNT当量法>Baker-Strehlow法>TNO多能法;当距离爆源较远时,3种方法预测结果相近 |
表3 3种方法的超压预测结果的对比分析
学者 | TNT当量法的当量系数α | TNO多能法的爆源强度 | Baker-Strehlow法的马赫数Ma | 超压预测结果 |
---|---|---|---|---|
Lobato等[ | 0.1 | 10 | 0.59 | 当距离爆源较近时,预测结果大小顺序为:TNT当量法> TNO多能法>Baker-Strehlow法;当距离爆源较远时,3种方法预测结果相近 |
Sari[ | — | 10 | 5.2 | 当距离爆源较近时,预测结果大小顺序为:TNO多能法>Baker-Strehlow法;当距离爆源较远时,两种方法预测结果相近 |
张网等[ | 0.1 | 5 | 0.25 | 当距离爆源较近时,预测结果大小顺序为:TNT当量法>Baker-Strehlow法>TNO多能法;当距离爆源较远时,3种方法预测结果相近 |
热力学和物理假设 | 学者 | 备注 |
---|---|---|
恒定体积能量增量 | Brode[ | 爆炸冲击波由气相与闪蒸的液相恒体积膨胀产生的 |
理想气体行为与等熵膨胀 | Prugh[ | ①爆炸冲击波由气相与闪蒸的液相膨胀产生; ②β=0.4; ③TNT曲线 |
热力学的有效能量 | Crowl[ | 爆炸冲击波由闪蒸的过热液相膨胀产生 |
等温膨胀 | Smith等[ | 爆炸冲击波由气相与闪蒸的液相的快速恒温膨胀产生 |
实际气体行为与绝热不可逆膨胀 | Planas-Cuchi等[ | ①爆炸冲击波由气相膨胀产生; ②β=0.4; ③TNT曲线 |
Casal等[ | ①爆炸冲击波由液相过热能产生; ②β=0.035-0.05;③TNT曲线 | |
Hemmatian等[ | ①爆炸冲击波由气相与闪蒸的液相膨胀产生; ②β=0.4;③TNT曲线 | |
实际气体行为与等熵膨胀 | Roberts[ CCPS[ | ①爆炸冲击波由气相与闪蒸的液相膨胀产生; ② β=1(未使用); ③TNO的Sachs 曲线 |
Casal等[ | ①爆炸冲击波由液相过热能产生; ② β=0.07-0.14; ③ TNT曲线 | |
Genova[ | ①爆炸冲击波由液相过热能产生;② β=0.07; ③ TNO的Sachs曲线 | |
等熵膨胀 | Birk[ | ①爆炸冲击波由气相膨胀产生;② β=2; ③ Kinney & Graham经验公式 |
表4 BLEVE机械能量计算方法的热力学和物理假设
热力学和物理假设 | 学者 | 备注 |
---|---|---|
恒定体积能量增量 | Brode[ | 爆炸冲击波由气相与闪蒸的液相恒体积膨胀产生的 |
理想气体行为与等熵膨胀 | Prugh[ | ①爆炸冲击波由气相与闪蒸的液相膨胀产生; ②β=0.4; ③TNT曲线 |
热力学的有效能量 | Crowl[ | 爆炸冲击波由闪蒸的过热液相膨胀产生 |
等温膨胀 | Smith等[ | 爆炸冲击波由气相与闪蒸的液相的快速恒温膨胀产生 |
实际气体行为与绝热不可逆膨胀 | Planas-Cuchi等[ | ①爆炸冲击波由气相膨胀产生; ②β=0.4; ③TNT曲线 |
Casal等[ | ①爆炸冲击波由液相过热能产生; ②β=0.035-0.05;③TNT曲线 | |
Hemmatian等[ | ①爆炸冲击波由气相与闪蒸的液相膨胀产生; ②β=0.4;③TNT曲线 | |
实际气体行为与等熵膨胀 | Roberts[ CCPS[ | ①爆炸冲击波由气相与闪蒸的液相膨胀产生; ② β=1(未使用); ③TNO的Sachs 曲线 |
Casal等[ | ①爆炸冲击波由液相过热能产生; ② β=0.07-0.14; ③ TNT曲线 | |
Genova[ | ①爆炸冲击波由液相过热能产生;② β=0.07; ③ TNO的Sachs曲线 | |
等熵膨胀 | Birk[ | ①爆炸冲击波由气相膨胀产生;② β=2; ③ Kinney & Graham经验公式 |
准则 | 适用范围 |
---|---|
超压准则 | t +≥10T |
冲量准则 | t +≤T/4 |
超压-冲量准则 | T/4≤t +≤10T |
表5 爆炸冲击波的一般毁伤准则适用范围
准则 | 适用范围 |
---|---|
超压准则 | t +≥10T |
冲量准则 | t +≤T/4 |
超压-冲量准则 | T/4≤t +≤10T |
作者 | 模型 |
---|---|
路胜卓[ | |
Salzano等[ | |
表6 激励条件与变化状态之间的动力响应定量模型对比
作者 | 模型 |
---|---|
路胜卓[ | |
Salzano等[ | |
方法 | 作者 | 公式 |
---|---|---|
静态峰值超压阈值方法 | Gledhill和Lines[ | Δp th为静态峰值超压阈值,常压容器Δp th=7kPa,压力容器Δp th=38kPa |
比例方法 | Bagster和Pitblado[ | 式中,r为到爆源中心的距离,m;R th为静态超压等于Δp th时到爆源中心的距离,m;Δp th为静态峰值超压阈值,对所有设备Δp th=36kPa |
Cozzani[ | 式中,R th为25%破坏失效概率的静态超压时的爆心距,m;Δp th为静态峰值超压阈值,对所有设备Δp th=36kPa | |
Probit模型方法 | Khan等[ | |
Khan和Abbasi[ | | |
Cozzani和Salzano[ | | |
Zhang等[ | | |
Mukhim和Abbasi等[ | |
表7 3种爆炸冲击波作用下化工设备破坏失效概率计算方法
方法 | 作者 | 公式 |
---|---|---|
静态峰值超压阈值方法 | Gledhill和Lines[ | Δp th为静态峰值超压阈值,常压容器Δp th=7kPa,压力容器Δp th=38kPa |
比例方法 | Bagster和Pitblado[ | 式中,r为到爆源中心的距离,m;R th为静态超压等于Δp th时到爆源中心的距离,m;Δp th为静态峰值超压阈值,对所有设备Δp th=36kPa |
Cozzani[ | 式中,R th为25%破坏失效概率的静态超压时的爆心距,m;Δp th为静态峰值超压阈值,对所有设备Δp th=36kPa | |
Probit模型方法 | Khan等[ | |
Khan和Abbasi[ | | |
Cozzani和Salzano[ | | |
Zhang等[ | | |
Mukhim和Abbasi等[ | |
1 | Center for Chemical Process Safety(CCPS) . Guidelines for chemical process quantitative risk analysis[M]. 2nd ed. New York: American Institute of Chemical Engineers, 2000. |
2 | 贾梅生, 陈国华, 胡昆 . 化工园区多米诺事故风险评价与防控技术综述[J]. 化工进展, 2017, 36(4): 1534-1543. |
JIA Meisheng , CHEN Guohua , HU Kun . Review of risk assessment and pro-control of Domino effect in Chemical Industry Park[J]. Chemical Industry and Engineering Progress, 2017, 36(4): 1534-1543. | |
3 | DELVOSALLE C . Domino effects phenomena: definition, overview and classification[C]// European Seminar on Domino Effects, Brussels, 1996: 5-15. |
4 | MHIDAS . Major Hazard incident data service [DB]. AES Health and Safety Executive, UK, 2001. |
5 | KHAN F I , ABBASI S A . Models for domino effect analysis in chemical process industries[J]. Process Safety Progress, 1998, 17(2): 107-123. |
6 | COZZANI V , GUBINELLI G , SALZANO E . Escalation thresholds in the assessment of Domino accidental events[J]. Journal of Hazardous Materials, 2006, 129(1/2/3): 1-21. |
7 | COZZANI V , SALZANO E . The quantitative assessment of Domino effects caused by overpressure: Part I. Probit models[J]. Journal of Hazardous Materials. 2004, 107(3): 67-80. |
8 | STAWCZYK J . Experimental evaluation of LPG tank explosion hazards[J]. Journal of Hazardous Materials, 2003, 96(2): 189-200. |
9 | JIANG J C , LIU Z G , KIM A K . Comparison of blast prediction models for vapor cloud explosion[C]// The Combustion Institute/Canada Section, 2001 Spring Technical Meeting, 2001. |
10 | BAKER Q A , BAKER W E . Pros and cons of TNT equivalence for industrial explosion accidents[C]// Proceedings of the International Conference and Workshop on Modeling and Mitigating the Consequences of Accidental Releases of Hazardous Materials, 1991. |
11 | BERG A C VAN DEN . The multi-energy method: a framework for vapour cloud explosion blast prediction[J]. Journal of Hazardous Materials, 1985, 12(1): 1-10. |
12 | STREHLOW R A , LUCKRITZ R T , ADAMCZYK A A , et al . The blast wave generated by spherical flames[J]. Combustion & Flame, 1979, 35(79): 297-310. |
13 | 沙金成 . 立式固定拱顶储罐爆炸压力下的结构应力分析[D]. 大庆:东北石油大学, 2014. |
SHA Jincheng . Structural stress analysis of vertical fixed-roof storage tanks under explosion pressure [D]. Daqing: Northeast Petroleum University, 2014. | |
14 | 严景艺, 张礼敬, 陶刚 . 瓶装液化气钢瓶泄漏事故[J]. 安全, 2016, 37(8): 42-44. |
YAN Jingyi , ZHANG Lijing , TAO Gang . Bottle liquefied gas cylinder leakage accident[J]. Safety, 2016, 37(8): 42-44. | |
15 | 管义锋, 史腾飞, 朱培培, 等 . LNG双燃料船舶加注过程气罐泄漏爆炸后果分析[J]. 船舶工程, 2016(1): 31-34. |
GUAN Yifeng , SHI Tengfei , ZHU Peipei , et al . Analysis on explosion consequence due to gas tank leakage in fuel filling process for LNG double-fuelled ship[J]. Ship Engineering, 2016(1): 31-34. | |
16 | 丁宇奇, 戴希明, 刘巨保, 等 . 基于TNT当量法的储罐内爆压力简化计算与应力分析[J]. 数学的实践与认识, 2017, 47(8): 116-126. |
DING Yuqi , DAI Ximing , LIU Jubao , et al . Simplified calculation of tank explosion pressure based on TNT method and stress analysis[J]. Mathematics in Practice and Theory, 2017, 47(8): 116-126. | |
17 | BOSCH C J H VAN DEN , WEJERINGS R A P M . Methods for the calculation of physical effects-due to the releases of hazardous material(liquid and gases)—‘Yellow Book’[M]. 3rd ed. The Hague: Advisory Council on Dangerous Substances, 2005. |
18 | MERCX W P M , BERG A C VAN DEN , HAYHURST C J , et al . Developments in vapour cloud explosion blast modeling[J]. Journal of Hazardous Materials, 2000, 71(1): 301-319. |
19 | MAREMONTI M , RUSSO G , SALZANO E , et al . Post-accident analysis of vapour cloud explosions in fuel storage areas[J]. Process Safety & Environmental Protection, 1999, 77(6): 360-365. |
20 | LOBATO J , CAÑIZARES P , RODRIGO M A , et al . A comparison of hydrogen cloud explosion models and the study of the vulnerability of the damage caused by an explosion of H2 [J]. International Journal of Hydrogen Energy, 2006, 31(12): 1780-1790. |
21 | SALZANO E , COZZANI V . The analysis of domino accidents triggered by vapor cloud explosions[J]. Reliability Engineering & System Safety, 2005, 90(2): 271-284. |
22 | ALONSO F D , FERRADÁS E G , PÉREZ J F S , et al . Characteristic overpressure-impulse-distance curves for vapour cloud explosions using the TNO multi-energy model[J]. Journal of Hazardous Materials, 2006, 137(2): 734-741. |
23 | ALONSO F D , FERRADÁS E G , JESÚS JIMÉNEZ SÁNCHEZA T DE , et al . Consequence analysis to determine the damage to humans from vapour cloud explosions using characteristic curves[J]. Journal of Hazardous Materials, 2008, 150(1): 146-152. |
24 | ALONSO F D , FERRADÁS E G , PÉREZ J F S , et al . Consequence analysis to determine damage to buildings from vapour cloud explosions using characteristic curves[J]. Journal of Hazardous Materials, 2008, 159(2): 264-270. |
25 | TANG M J , BAKER Q A . A new set of blast curves from vapor cloud explosion[J]. Process Safety Progress, 1999, 18(4): 235-240. |
26 | 张网, 吕东, 王婕 . 蒸气云爆炸后果预测模型的比较研究[J]. 工业安全与环保, 2010, 36(4): 48-49. |
ZHANG Wang , LÜ Dong, WANG Jie . Comparison of vapor cloud explosion consequences prediction models[J]. Industrial Safety and Environmental Protection, 2010, 36(4): 48-49. | |
27 | SARI A . Comparison of TNO multienergy and Baker-Strehlow-Tang models[J]. Process Safety Progress, 2015, 30(1): 23-26. |
28 | HEMMATIAN B , PLANAS E , CASAL J . Comparative analysis of BLEVE mechanical energy and overpressure modelling[J]. Process Safety & Environmental Protection, 2017, 106: 138-149. |
29 | BRODE H L . Blast wave from a spherical charge[J]. The Physics of Fluids, 1959, 2(2): 217-229. |
30 | PRUGH R W . Quantitative evaluation of BLEVE hazards[J]. Journal of Fire Protection Engineering, 1991, 3(1): 9-24. |
31 | CROWL D A . Using thermodynamic availability to determine the energy of explosion[J]. Process Safety Progress, 1991, 10(3): 136-142. |
32 | CROWL D A . Using thermodynamic availability to determine the energy of explosion for compressed gases[J]. Process Safety Progress, 1992, 11(2): 47-49. |
33 | SMITH J M . VAN NESS H C, ABBOTT M M Introduction to chemical engineering thermodynamics[M]. 8th ed. New York: McGraw-Hill Higer Education, 2017. |
34 | PLANAS-CUCHI E , SALLA J M , CASAL J . Calculating overpressure from BLEVE explosions[J]. Journal of Loss Prevention in the Process Industries, 2004, 17(6): 431-436. |
35 | CASAL J , SALLA J M . Using liquid superheating energy for a quick estimation of overpressure in BLEVEs and similar explosions[J]. Journal of Hazardous Materials, 2006, 137(3): 1321-1327. |
36 | ROBERTS M W . Analysis of boiling liquid expanding vapor explosion (BLEVE) events at DOE sites[C]// Proceedings SA-2000 Safety Analysis Working Group Workshop 2000. Los Alamos. Los Alamos National Laboratory, 2000. |
37 | Center for Chemical Process Safety (CCPS) . Guidelines for vapor cloud explosion, pressure vessel burst, BLEVE, and flash fire hazards[M]. 2nd ed. New York: Wiley Subscription Services, Inc., 2010. |
38 | GENOVA B , SILVESTRINI M , LEON TRUJILLO F J . Evaluation of the blast-wave overpressure and fragments initial velocity for a BLEVE event via empirical correlations derived by a simplified model of released energy[J]. Journal of Loss Prevention in the Process Industries, 2008, 21(1): 110-117. |
39 | BIRK A M , DAVISON C , CUNNINGHAM M . Blast overpressures from medium scale BLEVE tests[J]. Journal of Loss Prevention in the Process Industries, 2007, 20(3): 194-206. |
40 | ABBASI T , ABBASI S A . The boiling liquid expanding vapour explosion (BLEVE): mechanism, consequence assessment, management[J]. Journal of Hazardous Materials, 2007, 141(3): 489-519. |
41 | BUBBICO R , MARCHINI M . Assessment of an explosive LPG release accident: a case study[J]. Journal of Hazardous Materials, 2008, 155(3): 558-565. |
42 | CROWL D A . Understanding explosions[M]. New York: American Institute of Chemical Engineers(AIChE), 2010. |
43 | OGLE R A , RAMIREZ J C , SMYTH S A . Calculating the explosion energy of a boiling liquid expanding vapor explosion using exergy analysis[J]. Process Safety Progress, 2012, 31(1): 51-54. |
44 | LABOUREUR D , HEYMES F , LAPEBIE E , et al . BLEVE overpressure: multiscale comparison of blast wave modeling[J]. Process Safety Progress, 2014, 33(3): 274-284. |
45 | HEMMATIAN B , CASAL J , PLANAS E . A new procedure to estimate BLEVE overpressure[J]. Process Safety & Environmental Protection, 2017, 111: 320-325. |
46 | BERG A C VAN DEN . Blast charts for explosive evaporation of superheated liquids[J]. Process Safety Progress, 2008, 27(3): 219-224. |
47 | LABOUREUR D , BIRK A M , BUCHLIN J M , et al . A closer look at BLEVE overpressure[J]. Process Safety & Environmental Protection, 2015, 95: 159-171. |
48 | 孔德森, 张伟伟, 孟庆辉, 等 . TNT当量法估算地铁恐怖爆炸中的炸药当量[J]. 地下空间与工程学报, 2010, 6(1): 197-200. |
KONG Desen , ZHANG Weiwei , MENG Qinghui , et al . Estimation and evaluation of terror explosion equivalent in underground by TNT equivalent[J]. Chinese Journal of Underground Space and Engineering, 2010, 6(1): 197-200. | |
49 | 范俊余, 方秦, 张亚栋, 等 . 岩石乳化炸药TNT当量系数的试验研究[J]. 兵工学报, 2011, 32(10): 1243-1249. |
FAN Junyu , FANG Qin , ZHANG Yadong , et al . Experimental study on TNT equivalent coefficient of rock emulsion explosives[J]. Acta Armamentarii, 2011, 32(10): 1243-1249. | |
50 | 刘玲, 袁俊明, 刘玉存, 等 . 自制炸药的冲击波超压测试及TNT当量估算[J]. 火炸药学报, 2015, 38(2): 50-53. |
LIU Ling , YUAN Junming , LIU Yucun , et al . Measurement of shock wave overpressure and TNT equivalent of homemade explosives[J]. Chinese Journal of Explosives & Propellants, 2015, 38(2): 50-53. | |
51 | 路胜卓 . 可燃气体爆炸作用下大型钢制储油罐破坏机理研究[D]. 哈尔滨:哈尔滨工业大学, 2012. |
LU Shengzhuo . Research on failure mechanism of large-scale steel oil storage tanks under combustible gas blast [D]. Harbin: Harbin Institute of Technology, 2012. | |
52 | ARTERO-GUERRERO J , PERNAS-SÁNCHEZ J , TEIXEIRA-DIAS F . Blast wave dynamics: the influence of the shape of the explosive[J]. Journal of Hazardous Materials, 2017, 331: 189-199. |
53 | 李波 . 爆炸荷载作用下大型立式圆柱形储油罐动力响应分析[D]. 哈尔滨:哈尔滨工业大学, 2011. |
LI Bo . Analysis of dynamic response of large-scale liquid-storage vertical cylindrical tank under blast loads [D]. Harbin: Harbin Institute of Technology, 2011. | |
54 | VOORT M M VAN DER , BERG A C VAN DEN , ROEKAERTS D J E M , et al . Blast from explosive evaporation of carbon dioxide: experiment, modeling and physics[J]. Shock Waves, 2012, 22(2): 129-140. |
55 | 李丽萍, 孔德仁, 苏建军, 等 . 基于能量谱的爆炸冲击波毁伤特性研究[J]. 振动与冲击, 2015, 34(21): 71-75. |
LI Liping , KONG Deren , SU Jianjun , et al . Damage effects analysis for explosion shock wave based on energy spectrum[J]. Journal of Vibration and Shock, 2015, 34(21): 71-75. | |
56 | 张守中 . 爆炸与冲击动力学[M]. 北京: 兵器工业出版社, 1993. |
ZHANG Shouzhong . Explosion and shock dynamics [M]. Beijing: The Publishing House of Ordnance Industry, 1993. | |
57 | 李秋媛 . 化工设备区爆炸冲击波传递影响研究[D]. 哈尔滨:哈尔滨理工大学, 2014. |
LI Qiuyuan . Research on propagation rules of blast shock wave in chemical plant area [D]. Harbin: Harbin Institute of Technology, 2014. | |
58 | 吴宗之, 高进东, 魏利军, 等 . 危险评价方法及其应用[M]. 北京: 冶金工业出版社, 2001. |
WU Zongzhi , GAO Jindong , WEI Lijun , et al . Risk assessment methods and applications [M]. Beijing: Metallurgical Industry Press, 2001. | |
59 | JEREMIĆ R , BAJIĆ Z . An approach to determining the TNT equivalent of high explosives[J]. Scientific Technical Review, 2006, lvi( 1): 58-62. |
60 | 曹凤霞 . 爆炸综合毁伤效应研究[D]. 南京:南京理工大学, 2008. |
CAO Fengxia . Study on multi-damage effect of explosion [D]. Nanjing: Nanjing University of Science & Technology, 2008. | |
61 | 温华兵, 尹群, 张健 . 水下爆炸压力时频分布的小波包分析[J]. 江苏科技大学学报(自然科学版), 2008, 22(5): 48-52. |
WEN Huabing , YIN Qun , ZHANG Jian . Analysis of time-frequency distribution of underwater explosion pressure through wavelet packet transform[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2008, 22(5): 48-52. | |
62 | 温华兵, 张健, 尹群, 等 . 水下爆炸船舱冲击响应时频特征的小波包分析[J]. 工程力学, 2008, 25(6): 199-203. |
WEN Huabing , ZHANG Jian , YIN Qun , et al . Wavelet packet analysis of time-frequency characteristic of cabin shock response due to underwater explosion[J]. Engineering Mechanics, 2008, 25(6): 199-203. | |
63 | 孔霖, 苏健军, 李芝绒, 等 . 几种不同爆炸冲击波作用的能量谱分析[J]. 火炸药学报, 2010, 33(6): 76-79. |
KONG Lin , SU Jianjun , LI Zhirong , et al . Energy spectrum analysis of several kinds of explosive blast[J]. Chinese Journal of Explosives & Propellants, 2010, 33(6): 76-79. | |
64 | 张新梅 . 化工园区事故多米诺效应风险仿真原理及应用研究[D]. 广州: 华南理工大学, 2009. |
ZHANG Xinmei . Study on simulation principle of accident risk caused by Domino effect and its application in chemical industrial parks [D]. Guangzhou: South China University of Technology, 2009. | |
65 | 周成 . 化工园区事故多米诺效应下LPG储罐动力学特性研究[D]. 广州: 华南理工大学, 2010. |
ZHOU Cheng . The research of dynamic characteristics on LPG storage tank of Domino effect in chemical industry park [D]. Guangzhou: South China University of Technology, 2010. | |
66 | 李天华 . 爆炸荷载下钢筋混凝土板的动态响应及损伤评估[D]. 西安: 长安大学, 2012. |
LI Tianhua . Dynamic response and damage assessment of reinforced concrete slabs subjected to blast loading [D]. Xi’an: Chang’an University, 2012. | |
67 | 潘旭海, 徐进, 蒋军成 . 圆柱形薄壁储罐对爆炸冲击波动力学响应的模拟分析[J]. 化工学报, 2008, 59(3): 796-801. |
PAN Xuhai , XU Jin , JIANG Juncheng . Simulation analysis of dynamic response of thin-wall cylindrical tank to shock wave[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(3): 796-801. | |
68 | 朱正洋 . 爆炸荷载作用下大型双曲线型壳体结构动力响应分析[D]. 西安:西安建筑科技大学, 2011. |
ZHU Zhengyang . Dynamic response of large scaled hyperbolic shell structures under blast loading [D]. Xi’an: Xi’an University of Architecture and Technology, 2011. | |
69 | 王春梅 . LNG储罐在爆炸冲击荷载作用下的动力响应及可靠性分析[D]. 天津:天津大学, 2013. |
WANG Chunmei . Reliability analysis and dynamic response of LNG storage tank under explosive impact load [D]. Tianjin: Tianjin University, 2013. | |
70 | ZHANG B Y , LI H H , WANG W . Numerical study of dynamic response and failure analysis of spherical storage tanks under external blast loading[J]. Journal of Loss Prevention in the Process Industries, 2015, 34: 209-217. |
71 | 于志华 . 爆炸冲击作用下球型储液罐动力响应分析[D]. 哈尔滨:哈尔滨工业大学, 2011. |
YU Zhihua . Analysis of dynamic response of spherical liquid-storage tank under blast loading [D]. Harbin: Harbin Institute of Technology, 2011. | |
72 | 胡可 . 钢储罐结构爆炸冲击荷载与动力响应的数值模拟研究[D]. 杭州:浙江大学, 2016. |
HU Ke . Numerical simulation of explosion loading and dynamic response of steel tanks[D]. Hangzhou: Zhejiang University, 2016. | |
73 | 朱东 . 大型钢储罐在撞击和爆炸荷载作用下的动力响应分析[D]. 杭州:浙江大学, 2016. |
ZHU Dong . The analysis of dynamic response of large steel tank under impact and explosion load [D]. Hangzhou: Zhejiang University, 2016. | |
74 | 路胜卓, 王伟, 陈卫东 . 浮顶式储油罐的爆炸冲击失效[J]. 爆炸与冲击, 2015, 35(5): 696-702. |
LU Shengzhuo , WANG Wei , CHEN Weidong . Failure characteristics of floating-roof oil storage tanks subjected to blast impact[J]. Explosion and Shock Waves, 2015, 35(5): 696-702. | |
75 | SALZANO E , BASCO A . Simplified model for the evaluation of the effects of explosions on industrial target[J]. Journal of Loss Prevention in the Process Industries, 2015, 37(81): 119-123. |
76 | 贾梅生 . 过程设备火灾易损性理论与多米诺效应防控[D]. 广州: 华南理工大学, 2017. |
JIA Meisheng . Vulnerability theory for process equipment exposed to fire and pre-control of Domino effects [D]. Guangzhou: South China University of Technology, 2017. | |
77 | 陈国华, 吴家俊 . 地下密闭空间燃气爆炸冲击波传播规律[J]. 天然气工业, 2017, 37(2): 120-125. |
CHEN Guohua , WU Jiajun . Propagation laws of gas explosion shock waves in underground confined space[J]. Natural Gas Industry, 2017, 37(2): 120-125. | |
78 | 纪冲, 龙源, 方向, 等 . 钢质圆柱壳在侧向局部冲击荷载下的变形及失效破坏[J]. 振动与冲击, 2013, 32(15): 121-125. |
JI Chong , LONG Yuan , FANG Xiang , et al . Dynamic response and perforation failure of cylindrical shell subjected to lateral local impulsive loading[J]. Journal of Vibration and Shock, 2013, 32(15): 121-125. | |
79 | 贾梅生, 陈国华 . 火灾环境液化石油气卧罐稳定性与静态可靠性分析[J]. 化工进展, 2017, 36(7): 2353-2359. |
JIA Meisheng , CHEN Guohua . Stability and static reliability of horizontal LPG tank exposed to fire[J]. Chemical Industry and Engineering Progress, 2017, 36(7): 2353-2359. | |
80 | GLEDHILL J , LINES I . Development of methods to assess the significance of domino effects from major hazard sites: contract research report 183/1998[R]. Norwich: Health and Safety Executive (HSE), 1998. |
81 | BAGSTER D , PITBLADO R . Estimation of Domino incident frequencies - an approach[J]. Process Safety and Environment Protection, 1991, 69(4): 195-199. |
82 | KHAN F I , ABBASI S A . Studies on the probabilities and likely impacts of chains of accident (Domino effect) in a fertilizer industry[J]. Process Safety Progress, 2000, 19(19): 40-56. |
83 | ZHANG M G , JIANG J C . An improved Probit method for assessment of Domino effect to chemical process equipment caused by overpressure[J]. Journal of Hazardous Materials, 2008, 158(2): 280-286. |
84 | MUKHIM E D , ABBASI T , TAUSEEF S M , et al . Domino effect in chemical process industries triggered by overpressure - formulation of equipment-specific Probits[J]. Process Safety & Environmental Protection, 2017, 106: 263-273. |
85 | KHAN F I , ABBASI S A . An assessment of the likelihood of occurrence, and the damage potential of Domino effect (chain of accidents) in a typical cluster of industries[J]. Journal of Loss Prevention in the Process Industries, 2001, 14(4): 283-306. |
86 | EISENBERG N A , LYNCH C J , BREEDING R J . Vulnerability model. A simulation system for assessing damage resulting from marine spills: report CG-D-136-75[R]. Spring Field: National Technical Information Service, 1975. |
87 | COZZANI V , SALZANO E . Threshold values for Domino effects caused by blast wave interaction with process equipment[J]. Journal of Loss Prevention in the Process Industries[J]. 2004, 17(6): 437-447. |
88 | COZZANI V , SALZANO E . The quantitative assessment of Domino effect caused by overpressure: Part Ⅱ. Case studies[J]. Journal of Hazardous Materials, 2004, 107(3): 81-94. |
89 | SALZANO E , COZZANI V . A fuzzy set analysis to estimate loss intensity following blast wave interaction with process equipment[J]. Journal of Loss Prevention in the Process Industries, 2006, 19(4): 343-352. |
90 | SUN D L , HUANG G T , JIANG J C , et al . Study on the rationality and validity of Probit models of Domino effect to chemical process equipment caused by overpressure[J]. Journal of Physics Conference Series, 2013, 423(1): 1-9. |
[1] | 赵景斌, 王彦富, 王涛, 马伟恺, 王琛. 基于蒙特卡洛模拟和动态事件树的储罐脆弱性评估[J]. 化工进展, 2023, 42(5): 2751-2759. |
[2] | 黄孔星, 陈国华, 曾涛, 胡昆. 化工园区Na-Tech事件定量风险评价与防控体系评述[J]. 化工进展, 2019, 38(07): 3482-3494. |
[3] | 陈国华, 祁帅, 贾梅生, 胡昆. 化工容器碎片引发多米诺效应事故研究历程与展望[J]. 化工进展, 2017, 36(11): 4308-4317. |
[4] | 贾梅生, 陈国华. 火灾环境液化石油气卧罐动态可靠性分析[J]. 化工进展, 2017, 36(09): 3231-3236. |
[5] | 贾梅生, 陈国华. 火灾环境液化石油气卧罐稳定性与静态可靠性分析[J]. 化工进展, 2017, 36(07): 2353-2359. |
[6] | 贾梅生, 陈国华, 胡昆. 化工园区多米诺事故风险评价与防控技术综述[J]. 化工进展, 2017, 36(04): 1534-1543. |
[7] | 夏晨曦, 韩辉, 李伟敏. 基于贝叶斯网络的粉尘爆炸多米诺效应分析[J]. 化工进展, 2016, 35(S2): 110-115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |