化工进展 ›› 2019, Vol. 38 ›› Issue (03): 1434-1442.DOI: 10.16085/j.issn.1000-6613.2018-0551
收稿日期:
2018-03-19
修回日期:
2018-07-25
出版日期:
2019-03-05
发布日期:
2019-03-05
通讯作者:
谭晶
作者简介:
基金资助:
Zhenghe ZHANG(),Weimin YANG,Jing TAN(),Haoyi LI
Received:
2018-03-19
Revised:
2018-07-25
Online:
2019-03-05
Published:
2019-03-05
Contact:
Jing TAN
摘要:
碳纤维石墨化可以使其结构趋向于理想石墨结构,拉伸模量大幅提升,因此石墨化碳纤维广泛应用在航空航天等尖端技术领域。本文对比分析了碳纤维石墨化设备优缺点,详细介绍了激光超高温加热等新式石墨化方法及促进石墨化进程的相关工艺,进一步从微观结构层面分析影响力学性能的因素,为高模量碳纤维制备技术的研究提供理论及实践参考。指出目前主流的石墨体间接加热技术由于温度限制阻滞了碳纤维模量的进一步提升,克服高温限制且高效高质量、节能环保的石墨化技术是未来的发展趋势;应从组成碳纤维的分子层面去分析把握碳纤维的结构演变,进而优化控制石墨化工艺及设计相关石墨化设备,不断改善碳纤维石墨化结构,逐步趋向于力学性能的理论值。
中图分类号:
张政和,杨卫民,谭晶,李好义. 碳纤维石墨化技术研究进展[J]. 化工进展, 2019, 38(03): 1434-1442.
Zhenghe ZHANG,Weimin YANG,Jing TAN,Haoyi LI. Research progress of graphitization of carbon fibers[J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1434-1442.
名称 | 热源 | 优点 | 缺点 | 产业化程度 |
---|---|---|---|---|
塔姆式电阻炉 | 焦耳热 | 温度分布比较均匀 | 受发热体材料限制, 加热温度有限; 升温时间长, 耗电量大; 发热体寿命短; 成本较高 | 国内外普遍应用, 已产业化 |
感应炉 | 电涡流加热 | 升温速度快, 直接加热避免高温对炉体材料的损伤, 减少能量损耗 | 稳定性受纤维本身性能影响较大,碳纤维直径和电阻率不尽相同, 产生的感应电流不同,导致加热不均匀 | 尚处于研究开发中 |
射频炉 | 高频电磁能 | 温度分布比较均匀 | 受发热体材料限制加热温度有限; 耗电量大; 发热体寿命较短; 成本较高 | 日本东丽公司采用此技术 |
等离子炉 | 高能等离子体 | 工艺简单, 升温速度快, 能 耗低 | 温度场难以控制, 温度分布不均, 真空环境下操作较繁琐 | 研究阶段, 未工业化生产 |
表1 现有石墨化装备的优缺点及产业化程度
名称 | 热源 | 优点 | 缺点 | 产业化程度 |
---|---|---|---|---|
塔姆式电阻炉 | 焦耳热 | 温度分布比较均匀 | 受发热体材料限制, 加热温度有限; 升温时间长, 耗电量大; 发热体寿命短; 成本较高 | 国内外普遍应用, 已产业化 |
感应炉 | 电涡流加热 | 升温速度快, 直接加热避免高温对炉体材料的损伤, 减少能量损耗 | 稳定性受纤维本身性能影响较大,碳纤维直径和电阻率不尽相同, 产生的感应电流不同,导致加热不均匀 | 尚处于研究开发中 |
射频炉 | 高频电磁能 | 温度分布比较均匀 | 受发热体材料限制加热温度有限; 耗电量大; 发热体寿命较短; 成本较高 | 日本东丽公司采用此技术 |
等离子炉 | 高能等离子体 | 工艺简单, 升温速度快, 能 耗低 | 温度场难以控制, 温度分布不均, 真空环境下操作较繁琐 | 研究阶段, 未工业化生产 |
1 | 贺福 .碳纤维及石墨纤维[M]. 北京: 化学工业出版社,2010: 7-14. |
HE Fu .Carbon fiber and graphite fiber[M]. Beijing:Chemical Industry Press, 2010: 7-14. | |
2 | MOCHIDA I , SHIMIZU K , KORAI Y ,et al .Preparation of mesophase pitch from aromatic hydrocarbons by the aid of HF/BF3 [J]. Carbon, 1990, 28(2): 311-319. |
3 | MOCHIDA I , SHIMIZU K , KORAI Y , et al .Mesophase pitch catalytically prepared from anthracene with HF/BF3 [J]. Carbon, 1992, 30(1): 55-61. |
4 | Jan GRÉGR . The complete list of commercial carbon fibers[C]//7th International Conference, Texsci, Czech Republic, 2010. |
5 | 陈新谋, , 张蓬洲 .石墨化纤维制造新工艺及其专用设备: CN1203286A[P]. 1998-12-30. |
CHEN Xinmou , ZHANG Pengzhou .New manufacturing process and special equipment for the manufacture of graphitized fiber: CN 1203286A[P]. 1998-12-30. | |
6 | 张蓬洲 .高频加热装置连续化制备石墨纤维的研究[J]. 新型炭材料, 2002, 17(3): 52-55. |
ZHANG Pengzhou .Study on continuous preparation of graphite fiber by high frequency heating device[J]. New Carbon Materials, 2002, 17(3): 52-55. | |
7 | MICHAEL J R .Graphitization process: US 3656904[P]. 1972-04-18. |
8 | CHARLES M C . Process for continuous carbonization and graphitization of a stabilized acrylic fibrous material: US3900556[P]. 1975-08-19. |
9 | 王浩静, 刘颖, 周立公, 等 .一种生产石墨化碳纤维的方法及其专用装置: CN 1170020C[P]. 2003-02-06. |
WANG Haojing , LIU Ying , ZHOU Ligong , et al . A method for producing graphitized carbon fiber and its special device: CN 1170020C[P]. 2003-02-06. | |
10 | 谭晶, 杨卫民, 黎三洋, 等 .激光隧道炉炭纤维超高温石墨化处理方法[J]. 炭素技术, 2016, 35(6): 47-50. |
TAN Jing , YANG Weimin , LI Sanyang , et al .A method of ultra-high temperature graphitization for carbon fibers via laser tunnel furnace[J]. Carbon Technology, 2016, 35(6): 47-50. | |
11 | 杨卫民, 姚良博, 丁玉梅 .光隧道炉光束微积分聚焦方法及装置: CN2014105451017[P]. 2015-04-01. |
YANG Weimin , YAO Liangbo , DING Yumei .The focusing method and device for laser beam tunnel furnace: CN2014105451017[P]. 2015-04-01. | |
12 | 杨卫民, 黎三洋, 丁玉梅 .一种激光隧道反射法轴芯聚焦碳纤维石墨化炉: CN104294407A[P]. 2015-01-21. |
YANG Weimin , LI Sanyang , DING Yumei .A laser tunnel firing method for core focused carbon fiber graphitization furnace: CN104294407A[P]. 2015-01-21. | |
13 | 杨卫民, 王晗, 丁玉梅 .一种激光隧道全反射轴心聚焦碳纤维石墨化炉: CN104760953A[P]. 2015-07-08. |
YANG Weimin , WANG Han , DING Yumei .A laser tunnel full reflected axis focused carbon fiber graphitization furnace: CN104760953A[P]. 2015-07-08. | |
14 | YAO Liangbo , YANG Weimin , LI Ssanyang , et al .Graphitization of PAN-based carbon fibers by CO2 laser irradiation[J]. Carbon Letters, 2017, 24(1): 97-102. |
15 | BALDAN A .Adhesively-bonded joints and repairs in metallic alloys, polymers and composite materials: adhesives, adhesion theories and surface pretreatment[J]. Journal of Maters Science, 2004, 39(1): 1-49. |
16 | 松田至康 .碳纤维连续石墨化炉: CN106458595A[P]. 2017-02-22. |
Kotokoyasu MATSUDA .Carbon fiber continuous graphitization furnace: CN106458595A[P]. 2017-02-22. | |
17 | 沈曾民, 韩赞, 张学军, 等 .石墨化温度对PAN基高模量碳纤维微观结构的影响[J]. 化工进展, 2011, 30(8): 1805-1808. |
SHEN Zengmin , HAN Zan , ZHANG Xuejun , et al .Effect of graphitization temperature on microstructure of PAN-based high modulus graphite fibers[J]. Chemical Industry and Engineering Progress, 2011, 30(8): 1805-1808. | |
18 | 王浩静, 李东风, 薛林兵, 等 .PAN 基碳纤维连续石墨化过程中的取向性[J]. 化工进展, 2006, 25(9): 1101-1109. |
WANG Haojing , LI Dongfeng , XUE Linbing , et al .Preferred orientation of PAN-based carbon fibers during continuous graphitization[J]. Chemical Industry and Engineering Progress, 2011, 30 (8): 1805-1808. | |
19 | 张永刚, 钱鑫, 王雪飞 .低温石墨化对碳纤维性能的影响[J]. 高科技纤维与应用, 2016, 41(2): 28-31. |
ZHANG Yonggang , QIAN Xin , WANG Xuefei .Effect of low-temperature graphitization on the properties of carbon fibers[J]. Hi-Tech Fiber and Application, 2016, 41(2): 28-31. | |
20 | 钱鑫, 张永刚, 王雪飞 .高温石墨化对碳纤维结构的影响[J]. 高科技纤维与应用, 2016, 41(2): 24-27. |
QIAN Xin , ZHANG Yonggang , WANG Xuefei .Effect of high-temperature graphitization on the structure of carbon fibers[J]. Hi-Tech Fiber and Application, 2016, 41(2): 24-27. | |
21 | 王宇, 张博文, 徐樑华 .PAN基碳纤维高温环境下成分结构的温度场效应[J]. 化工新型材料, 2015, 43(10): 101-103. |
WANG Yu , ZHANG Bowen , XU Lianghua .Temperature condition effect PAN-based of composition and structure of carbon fibers[J]. New Chemical Materials, 2015, 43(10): 101-103. | |
22 | 刘福杰, 王浩静, 范立东 .热处理方式对石墨纤维性能的影响[J]. 宇航材料工艺, 2010, 40(6): 49-52. |
LIU Fujie , WANG Haojing , FAN Lidong .Effect of heat treatment style on properties of graphite fibers[J]. Aerospace Materials and Technology, 2010, 40(6): 49-52. | |
23 | 韩赞 .PAN基高强高模碳纤维的制备与表征[D]. 北京: 北京化工大学, 2011. |
HAN Zan .Preparation and characterization of PAN-based high strength and high modulus carbon fibers[D]. Beijing: Beijing University of Chemical Technology, 2011. | |
24 | GREENE M L , SCHWARTZ R W , TRELEAVEN J W .Short residence time graphitization of mesophase pitch-based carbon fibers[J]. Carbon, 2002, 40(8): 1217-1226. |
25 | 乔生儒, 骆蓉, 杨峥, 等 .单向碳纤维/热解碳复合材料的高温蠕变行为[J]. 金属学报, 1994(23): 524-526. |
QIAO Shengru , LUO Rong , YANG Zheng , et al .Creep behaviour of an nidirectional CF/CP composite at high temperatures[J]. Acta Metallurgica Sinica, 1994(23): 524-526. | |
26 | 靳玉伟, 高爱君, 刘钟铃, 等 .牵伸对石墨纤维结构和力学性能的影响[J]. 化工新型材料, 2010, 38(10): 67-68. |
JIN Yuwei , GAO Aijun , LIU Zhongling , et al .The change of performance under high temperature heat treatment in PAN-based graphite fibers[J]. New Chemical Materials, 2010, 38(10): 67-68. | |
27 | 黎三洋, 杨卫民, 谭晶, 等 . 激光石墨化过程中激光功率和牵伸力对聚丙烯腈基碳纤维化学结构和微观结构的影响[J]. 化工进展, 2018, 37(2): 658-663. |
LI Sanyang , YANG Weimin , TAN Jing , et al . Effect of laser power and stretching force on the chemical structure and microstructure of PAN-based carbon fibers under laser graphitization[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 658-663. | |
28 | XU Zhiwei , LIU Liangsen , HUANG Yudong , al at .Graphitization of polyacrylonitrile carbon fibers and graphite irradiated by γ rays[J]. Materials Letters, 2009(63): 1814-1816. |
29 | HAO Xiao , LU Yonggen , WANG Mouhua , et al .Effect of gamma-irradiation on the mechanical properties of polyacrylonitrile-based carbon fiber[J]. Carbon, 2013(52): 427-439. |
30 | XU Shihai , ZHANG Fengying , LIU Shaohuan , et al .Catalytic graphitization of Mo-B-doped polyacrylonitrile (PAN)-based carbon fibers[J]. Journal of Central South University of Technology, 2010, 17(4): 703-707. |
31 | CHUNKOV V V , TYUMENTSEV V A , PODKOPAEV S A .Effect of boron additive on the formation of the carbon fiber structure[J]. Russian Journal of Applied Chemistry, 2010, 83(6): 989-992. |
32 | CHEN Jie , XIONH Xiang, XIAO Peng , et al . The catalytic effect of boric acid on polyacrylonitrile-based carbon fibers and the thermal conductivity of carbon/carbon composites produced from them[J]. Carbon, 2010, 48(8): 2341-2346. |
33 | 王慧奇, 郭全贵, 杨金华, 等 .气相硼催化石墨化碳纤维对其力学性能和微观结构的影响[J]. 新型碳材料, 2015(30): 122-124. |
WANG Huiqi , GUO Jingui , YANG Jinhua , al at .Effects of gas-phase boron on the mechanical properties and microstructure of graphitized carbon fibers[J]. New Carbon Materials, 2015(30): 122-124. | |
34 | XU Shihai , ZHANG Fengying , LIU Shaohuan , et al . Catalytic graphitization of Mo-B-doped polyacrylonitrile (PAN)-based carbon fibers[J]. Journal of Central South University, 2010, 17: 703−707. |
35 | 田艳红, 常维璞, 沈曾民 . 炭纤维硼改性的研究进展[J]. 碳素技术, 1999, 5: 24-28. |
TIAN Yanhong , CHANG Weipu , SHEN Zengmin .Research progress on modification of carbon fiber boron[J]. Carbon Techniques, 1999, 5: 24-28. | |
36 | VINCENT H , VINCENT C , SCHARFF J P , et a1 .Thermodynamic and experimental conditions for the fabrication of a boron carbide layer on high-modulus carbon fiber surfaces by RCVD[J]. Carbon, 1992, 30(3): 495-505. |
37 | ZHOU Haihui , YU Qiang , PENG Qiling , et al .Catalytic graphitization of carbon fibers with electrodeposited Ni-B alloy coating[J]. Materials Chemistry and Physics, 2008, 110(2/3): 434−439. |
38 | BRYAN E B , BEHR M J , PATTON J T , et al .High-modulus low-cost carbon fibers from polyethylene enabled by boron catalyzed graphitization[J]. Small, 2017, 13(36): 1-7. |
39 | 旷亚非, 黄振华, 周海晖, 等 .电沉积Fe-P合金镀层催化碳纤维石墨化研究[J]. 湖南大学学报(自然科学版), 2012, 39(1): 61-66. |
KUANG Yafei , HUANG Zhenhua , ZHOU Haihui , et al .Catalytic graphitization of carbon fibers with electrodeposited Fe-P alloy coating[J]. Journal of Hunan University (Natural Science Edition), 2012, 39(1): 61-66. | |
40 | Chunxiang LÜ , LI Denghua , WANG Lina , et al .A reconsideration of the relationship between structural features and mechanical properties of carbon fibers[J]. Materials Science and Engineering A, 2017(685): 65-70. |
41 | 李伟伟, 康宏亮, 徐坚, 等 .高强高模型碳纤维与高模型碳纤维微观结构分析[J]. 高分子学报, 2018(3): 1-9. |
LI Weiwei , KANG Hongliang , XU Jian , et al . Microstructures of high-strength high-modulus carbon fibers and high-modulus carbon fibers[J]. Acta Polymerica Sinica, 2018(3): 1-9. | |
42 | 吕永根 .高性能碳纤维[M]. 北京: 化学工业出版社, 2016: 116-130. |
Yonggen LÜ . High performance carbon fiber[M]. Beijing: Chemical Industry Press, 2016: 116-130. | |
43 | 钟云姣, 边文凤 .PAN基碳纤维微晶结构对拉伸强度的影响[J]. 材料工程, 2017, 45(12): 37-42. |
ZHONG Yunjiao , BIAN Wenfeng .Effect of crystallites structure of PAN-based carbon fibers on tensile strength[J]. Journal of Materials Engineering, 2017, 45(12): 37-42. | |
44 | 钟云娇, 边文凤 .高模碳纤维细观力学分析[J].复合材料学报, 2017, 34(3): 668-674. |
ZHONG Yunjiao , BIAN Wenfeng .Micromechanics analysis of high modulus carbon fibers[J]. Acta Materiea compositae Sinica, 2017, 34(3): 668-674. | |
45 | QIN Xianying , LU Yonggen , XIAO Hao , et al .A comparison of the effect of graphitization on microstructure and properties of polyacrylonitrile and mesophase pitch-based carbon fiber[J]. Carbon, 2012(50): 4459-4469. |
46 | 高爱君, 靳玉伟, 徐樑华 .氮对碳纤维石墨化的影响[J].材料研究学报, 2010, 24(2): 149-153. |
GAO Aijun , JI Yuwei , XU Lianghua .Effect of nitrogen element in the graphitization of carbon fiber[J]. Chinese Journal of Materials Research, 2010, 24(2): 149-153. | |
47 | 陈念贻 .化学键理论与材料设计[C]//第二届中国材料研讨会论文集, 1988: 279-285. |
CHEN Nianyi .Chemical bond theory and material design[C]//A Collection of Papers on The Second China Material Symposium, 1988: 279-285. | |
48 | FRANK E , STEUDLE L M , INGILDEEV D .Carbon fibers: precursor systems, processing, structure, and properties[J]. Angewandte Chemie, 2014, 53(21): 5262-5298. |
49 | 于大秋 . 晶体中的化学键和结构-性能关系研究[D]. 大连: 大连理工大学, 2008. |
YU Daqiu .Investigation of chemical bond and structure-property relationship of crystal materials[D]. Dalian: Dalian University of Technology, 2008. | |
50 | Gupta NITANT , I Artyukhov VASILII , S Penev EVGENI , et al .Carbonization with misfusion: fundamental limits of carbon-fiber strength revisited[J]. Advanced Materials, 2016, 28: 10317-10322. |
[1] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[2] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[3] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[4] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[5] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[6] | 张瑞杰, 刘志林, 王俊文, 张玮, 韩德求, 李婷, 邹雄. 水冷式复叠制冷系统的在线动态模拟与优化[J]. 化工进展, 2023, 42(S1): 124-132. |
[7] | 徐晨阳, 都健, 张磊. 基于图神经网络的化学反应优劣评价[J]. 化工进展, 2023, 42(S1): 205-212. |
[8] | 王福安. 300kt/a环氧丙烷工艺反应器降耗减排分析[J]. 化工进展, 2023, 42(S1): 213-218. |
[9] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[10] | 李春利, 韩晓光, 刘加朋, 王亚涛, 王晨希, 王洪海, 彭胜. 填料塔液体分布器的研究进展[J]. 化工进展, 2023, 42(9): 4479-4495. |
[11] | 陈林, 徐培渊, 张晓慧, 陈杰, 徐振军, 陈嘉祥, 密晓光, 冯永昌, 梅德清. 液化天然气绕管式换热器壳侧混合工质流动及传热特性[J]. 化工进展, 2023, 42(9): 4496-4503. |
[12] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[13] | 张帆, 陶少辉, 陈玉石, 项曙光. 基于改进恒热传输模型的精馏模拟初始化[J]. 化工进展, 2023, 42(9): 4550-4558. |
[14] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[15] | 张智琛, 朱云峰, 成卫戍, 马守涛, 姜杰, 孙冰, 周子辰, 徐伟. 高压聚乙烯失控分解研究进展:反应机理、引发体系与模型[J]. 化工进展, 2023, 42(8): 3979-3989. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |