化工进展 ›› 2019, Vol. 38 ›› Issue (02): 1075-1084.DOI: 10.16085/j.issn.1000-6613.2018-0885
冯健1(),余杰1,周建1,2(),张永德2,林晓艳2,罗学刚1,2
收稿日期:
2018-04-28
修回日期:
2018-06-22
出版日期:
2019-02-05
发布日期:
2019-02-05
通讯作者:
周建
作者简介:
<named-content content-type="corresp-name">冯健</named-content>(1996—),男,本科生。E-mail:<email>1764503194@qq.com</email>。|周建,副研究员,硕士生导师,研究方向为生物质化学与工程。E-mail:<email>zhoujian@swust.edu.cn</email>。
基金资助:
Jian FENG1(),Jie YU1,Jian ZHOU1,2(),Yongde ZHANG2,Xiaoyan LIN2,Xuegang LUO1,2
Received:
2018-04-28
Revised:
2018-06-22
Online:
2019-02-05
Published:
2019-02-05
Contact:
Jian ZHOU
摘要:
采用去溶剂法和杨梅单宁-戊二醛固化接枝制备得到杨梅单宁(BT)接枝牛血清白蛋白(BSA)纳米球(BSA-BT-NSs)吸附材料,并系统探讨了其在不同吸附条件下对水体中Pb2+的吸附去除性能。研究结果表明:50%用量杨梅单宁(基于BSA-NSs量)接枝固化得到的BSA-BT-NSs具有较好的球形结构和良好的分散性。在吸附实验中,Pb2+初始浓度为250mg/L、pH 5.0、温度为298K 条件下吸附20min,BSA-BT-NSs(0.4g/L)对Pb2+的吸附效果最佳,最大吸附容量为76mg/g,优于多数同类型吸附材料。BSA-BT-NSs对Pb2+吸附过程符合Langmuir方程和准二级吸附动力学模型,且吸附后的BSA-BT-NSs经0.1mol/L 硝酸进行解吸取得了92.04%的良好解吸效果,并可再次重复使用。进一步分析其Pb2+吸附机理,表明BSA-BT-NSs中的氨基氮原子、羟基和羧基氧原子作为电子供体参与了与Pb2+的空轨道发生配位作用。
中图分类号:
冯健, 余杰, 周建, 张永德, 林晓艳, 罗学刚. 牛血清白蛋白纳米球接枝杨梅单宁的制备以及吸附去除水体中Pb2+的性能[J]. 化工进展, 2019, 38(02): 1075-1084.
Jian FENG, Jie YU, Jian ZHOU, Yongde ZHANG, Xiaoyan LIN, Xuegang LUO. Removal of Pb2+ from aqueous solution using bovine serum albumin nanospheres grafted with bayberry tannin[J]. Chemical Industry and Engineering Progress, 2019, 38(02): 1075-1084.
吸附动力学模型 | 动力学常数 k | Q e | 相关系数 R 2 |
---|---|---|---|
准一级动力学 | 0.2308 | 18.5780 | 0.9604 |
准二级动力学 | 0.0067 | 61.3497 | 0.9954 |
表1 BSA-BT-NSs吸附Pb2+的动力学方程拟合参数
吸附动力学模型 | 动力学常数 k | Q e | 相关系数 R 2 |
---|---|---|---|
准一级动力学 | 0.2308 | 18.5780 | 0.9604 |
准二级动力学 | 0.0067 | 61.3497 | 0.9954 |
T/K | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
Q m/mg·g-1 | K L/L·mg-1 | R2 | K f | 1/n | R2 | |
288 | 76.3359 | 0.0634 | 0.9997 | 29.7521 | 0.1662 | 0.9837 |
298 | 80.6452 | 0.0752 | 0.9996 | 30.4717 | 0.1772 | 0.8905 |
308 | 72.9927 | 0.0665 | 0.9998 | 29.3297 | 0.1612 | 0.9786 |
表2 Langmuir和Freundlich方程拟合参数
T/K | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
Q m/mg·g-1 | K L/L·mg-1 | R2 | K f | 1/n | R2 | |
288 | 76.3359 | 0.0634 | 0.9997 | 29.7521 | 0.1662 | 0.9837 |
298 | 80.6452 | 0.0752 | 0.9996 | 30.4717 | 0.1772 | 0.8905 |
308 | 72.9927 | 0.0665 | 0.9998 | 29.3297 | 0.1612 | 0.9786 |
生物质吸附剂 | pH | 温度/K | Q max/mg·g-1 |
---|---|---|---|
棕榈壳[ | 3.0 | 300 | 95.2 |
BSA-BT-NSs | 5.0 | 298 | 80.65 |
椰子壳[ | 5.6 | 298 | 76.66 |
干面包酵母[ | 5.0 | 303 | 60.24 |
狐尾藻[ | 5.0 | 298 | 53.87 |
菜豆废弃物[ | 5.0 | 293 | 42.77 |
大豆皮[ | 5.0 | 296 | 39.37 |
松果[ | — | 298 | 27.53 |
凤眼莲[ | 4.84 | 303 | 26.32 |
杏核[ | 6.5 | 298 | 22.85 |
樟子松锯末[ | 5.0 | 298 | 22.22 |
HNO3处理的橄榄树[ | 5.0 | 298 | 14.15 |
茶叶废料[ | 5.8 | 303 | 1.35 |
表3 BSA-BT-NSs与其他生物质材料对Pb2+最大吸附
生物质吸附剂 | pH | 温度/K | Q max/mg·g-1 |
---|---|---|---|
棕榈壳[ | 3.0 | 300 | 95.2 |
BSA-BT-NSs | 5.0 | 298 | 80.65 |
椰子壳[ | 5.6 | 298 | 76.66 |
干面包酵母[ | 5.0 | 303 | 60.24 |
狐尾藻[ | 5.0 | 298 | 53.87 |
菜豆废弃物[ | 5.0 | 293 | 42.77 |
大豆皮[ | 5.0 | 296 | 39.37 |
松果[ | — | 298 | 27.53 |
凤眼莲[ | 4.84 | 303 | 26.32 |
杏核[ | 6.5 | 298 | 22.85 |
樟子松锯末[ | 5.0 | 298 | 22.22 |
HNO3处理的橄榄树[ | 5.0 | 298 | 14.15 |
茶叶废料[ | 5.8 | 303 | 1.35 |
合成吸附剂 | pH | 温度 /K | Q max /mg·g-1 |
---|---|---|---|
合成矿物吸附剂[ | 3.0 | 328 | 157.9 |
三亚乙基四胺改性聚苯乙烯树脂[ | 6.0 | 353 | 154.71 |
改性的磁赤铁矿纳米粒子[ | 6.0 | 298 | 118.51 |
磁性Fe3O4 /粉末活性炭复合材料(Fe3O4/PAC)[ | 6.0 | 323 | 94.3 |
壳聚糖修饰的MCM-41-A[ | 6.0 | — | 90.91 |
BSA-BT-NSs | 5.0 | 298 | 80.65 |
Pb2+离子印迹聚合物(Pb2+-IIP)[ | 6.0 | 288 | 42.55 |
Pb2+-印迹聚甲基丙烯酸(IIP/PAN)[ | 5.7 | 298 | 41.4 |
纳米复合水凝胶(丙烯酸 - 丙烯酰胺)[ | 6.0 | — | 35.94 |
表4 BSA-BT-NSs与其他合成类材料对Pb2+最大吸附
合成吸附剂 | pH | 温度 /K | Q max /mg·g-1 |
---|---|---|---|
合成矿物吸附剂[ | 3.0 | 328 | 157.9 |
三亚乙基四胺改性聚苯乙烯树脂[ | 6.0 | 353 | 154.71 |
改性的磁赤铁矿纳米粒子[ | 6.0 | 298 | 118.51 |
磁性Fe3O4 /粉末活性炭复合材料(Fe3O4/PAC)[ | 6.0 | 323 | 94.3 |
壳聚糖修饰的MCM-41-A[ | 6.0 | — | 90.91 |
BSA-BT-NSs | 5.0 | 298 | 80.65 |
Pb2+离子印迹聚合物(Pb2+-IIP)[ | 6.0 | 288 | 42.55 |
Pb2+-印迹聚甲基丙烯酸(IIP/PAN)[ | 5.7 | 298 | 41.4 |
纳米复合水凝胶(丙烯酸 - 丙烯酰胺)[ | 6.0 | — | 35.94 |
1 | LI Z Y , MA Z W, KUIJP T J VAN DER , et al . A review of soil heavy metal pollution from mines in China: pollution and health risk assessment[J]. Science of the Total Environment, 2014, 468: 843-853. |
2 | ZHANG X W , YANG L S , LI Y H , et al . Impacts of lead/zinc mining and smelting on the environment and human health in China[J]. Environmental Monitoring and Assessment, 2012, 184(4): 2261-2273. |
3 | XU C B , YANG W J , SUN H L , et al . Performance and mechanism of Pb2+ removal by expanded graphite loaded with zero-valent iron[J]. Journal of Inorganic Materials, 2018, 33(1): 41-47. |
4 | DIMITROVA SV . Use of granular slag columns for lead removal[J]. Water Research, 2002, 36(16): 4001-4008. |
5 | ABOU-SHADY A , PENG C S , BI J J , et al . Recovery of Pb2+ and removal of NO3 - from aqueous solutions using integrated electrodialysis, electrolysis, and adsorption process[J]. Desalination, 2012, 286(4): 304-315. |
6 | DEMIRBAS A . Heavy metal adsorption onto agro-based waste materials: a review[J]. Journal of Hazardous Materials, 2008, 157(2/3): 220-229. |
7 | RONDA A , DELLA Z M , MARTIN-LARA M A , et al . Combustion of a Pb2+-loaded olive tree pruning used as biosorbent[J]. Journal of Hazardous Materials, 2016, 308: 285-293. |
8 | ZHAO D D , YU Y , CHEN J P . Treatment of lead contaminated water by a PVDF membrane that is modified by zirconium, phosphate and PVA[J]. Water Research, 2016, 101: 564-573. |
9 | GHERASIM C V , MIKULASEK P . Influence of operating variables on the removal of heavy metal ions from aqueous solutions by nanofiltration[J]. Desalination, 2014, 343(s1): 67-74. |
10 | CAO X D , MA L N, GAO B , et al . Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science & Technology, 2009, 43(9): 3285-3291. |
11 | REN X M , SHAO D D , YANG S T , et al . Comparative study of Pb2+ sorption on XC-72 carbon and multi-walled carbon nanotubes from aqueous solutions[J]. Chemical Engineering Journal, 2011, 170(1): 170-177. |
12 | SHARIFPOUR E , KHAFRI H Z , GHAEDI M , et al . Isotherms and kinetic study of ultrasound-assisted adsorption of malachite green and Pb2+ from aqueous samples by copper sulfide nanorods loaded on activated carbon: experimental design optimization[J]. Ultrasonics Sonochemistry, 2018, 40: 373-382. |
13 | BRADL H B . Adsorption of heavy metal ions on soils and soils constituents[J]. Journal of Colloid and Interface Science, 2004, 277(1): 1-18. |
14 | MOHAMMAD A M , ELDIN T A S , HASSAN M A , et al . Efficient treatment of lead-containing wastewater by hydroxyapatite/chitosan nanostructures[J]. Arabian Journal of Chemistry, 2017, 10(5): 683-690. |
15 | 马贺伟,廖学品,石碧 .皮胶原固化单宁膜材料的制备及其对U(Ⅵ)的吸附研究[J]. 膜科学与技术, 2005, 25(2): 20-24. |
MA H W, LIAO X P , SHI B .Preparation of collagen immobilized tannin membrane and its adsorption to U6+ [J].Membrane Science and Technology, 2005, 25(2):20-24. | |
16 | 霍子微 . 纳米纤维素接枝超支化聚酰胺交联增强单宁胶黏剂研究[D].南京:南京林业大学, 2017. |
HUO Z W .Crosslinking and reinfocement of tannic adhesive by cellulose nanofibrils grafted with hyperbranched polyamides abstract [D]. Nanjing:Nanjing Forestry University,2017. | |
17 | 廖学品, 邓慧, 陆忠兵, 等 . 胶原纤维固化单宁及其对Cu2+的吸附[J]. 林产化学与工业, 2003(4): 11-16. |
LIAO X P , DENG H , LU Z B ,et al .Collagen immobilized tannins and their adsorption for Cu2+ [J]. Chemistry and Industry of Forest Products, 2003(4): 11-16. | |
18 | 何春光, 廖洋, 廖学品, 等 . 胶原纤维固化杨梅单宁对Pr3+, Nd3+的吸附特性[J]. 稀有金属材料与工程, 2006(12):1928-1931. |
HE C G , LIAO Y , LIAO X P , et al . Study on adsorption property of rare earth elements by myrtan tannins immodilized on collagen fiber[J].Rare Metal Materials and Engineering, 2006(12): 1928-1931. | |
19 | LI X H , XU H X , GAO B , et al . Efficient biosorption of Pb2+ from aqueous solutions by a PAH-degrading strain Herbaspirillum chlorophenolicum FA1[J]. Journal of Industrial and Engineering Chemistry, 2018, 57: 64-71. |
20 | SHAHBAZI A , YOUNESI H , BADIEI A . Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb2+, Cu2+ and Cd2+ heavy metal ions in batch and fixed bed column[J]. Chemical Engineering Journal, 2011, 168(2): 505-518. |
21 | 张景 . 复合MnO2-Fe3O4吸附水中重金属及其循环利用的研究[D].上海:上海大学, 2016. |
ZHANG J .Compound MnO2-Fe3O4 adsorption of heavy metals from aqueous solutions and its research of recycling[D]. Shanghai: Shanghai University, 2016. | |
22 | DEMEY H , VINCENT T , GUIBAL E . A novel algal-based sorbent for heavy metal removal[J]. Chemical Engineering Journal , 2018, 332: 582-595. |
23 | LI D D , XU X J , YU H W , et al . Characterization of Pb2+ biosorption by psychrotrophic strain Pseudomonas sp. I3 isolated from permafrost soil of Mohe wetland in Northeast China[J]. Journal of Environmental Management, 2017, 196: 8-15. |
24 | HUANG J , YE M , QU Y Q , et al . Pb2+ removal from aqueous media by EDTA-modified mesoporous silica SBA-15[J]. Journal of Colloid and Interface Science, 2012, 385: 137-146. |
25 | DENG S B , TING Y P . Characterization of PEI-modified biomass and biosorption of Cu2+ , Pb2+ and Ni2+ [J]. Water Research, 2005, 39(10): 2167-2177. |
26 | RAMRAKHIANI L , HALDER A , MAJUMDER A , et al . Industrial waste derived biosorbent for toxic metal remediation: mechanism studies and spent biosorbent management[J]. Chemical Engineering Journal , 2017, 308: 1048-1064. |
27 | PAP S, RADONIC J , TRIFUNOVIC S , et al . Evaluation of the adsorption potential of eco-friendly activated carbon prepared from cherry kernels for the removal of Pb2+, Cd2+ and Ni2+ from aqueous wastes[J]. Journal of Environmental Management, 2016, 184: 297-306. |
28 | WANG B , WEN J L , SUN S L , et al . Chemosynthesis and structural characterization of a novel lignin-based bio-sorbent and its strong adsorption for Pb2+ [J]. Industrial Crops and Products, 2017, 108: |
72-80. | |
29 | RAO M M , RAO G P C , SESHAIAH K , et al . Activated carbon from Ceiba pentandra hulls, an agricultural waste, as an adsorbent in the removal of lead and zinc from aqueous solutions[J]. Waste Management, 2008, 28(5): 849-858. |
30 | LALHRUAITLUANGA H , JAYARAM K , PRASAD M N V , et al . Pb2+ adsorption from aqueous solutions by raw and activated charcoals of Melocanna baccifera Roxburgh (bamboo): a comparative study[J]. Journal of Hazardous Materials, 2010, 175(1/2/3): 311-318. |
31 | OLU-OWOLABI B I , DIAGBOYA P N , UNUABONAH E I , et al . Fractal-like concepts for evaluation of toxic metals adsorption efficiency of feldspar-biomass composites[J]. Journal of Cleaner Production , 2018, 171: 884-891. |
32 | WANG G Y , ZHANG S R , YAO P , et al . Removal of Pb2+ from aqueous solutions by Phytolacca americana L. biomass as a low cost biosorbent[J]. Arabian Journal of Chemistry, 2018, 11(1): 99-110. |
33 | KALINKE C , MANGRICH A S , MARCOLINO-JUNIOR L H , et al . Biochar prepared from castor oil cake at different temperatures: a voltammetric study applied for Pb2+, Cd2+ and Cu2+ ions preconcentration[J]. Journal of Hazardous Materials, 2016, 318: 526-532. |
34 | JI Z H , FENG C L , WU X F , et al . Composite of biomass and lead resistent Aspergillus oryzae for highly efficient aqueous phase Pb2+ adsorption[J]. Environmental Progress & Sustainable Energy , 2017, 36(6): 1658-1666. |
35 | PARLAYICI S , PEHLIVAN E . Removal of metals by Fe3O4 loaded activated carbon prepared from plum stone (Prunus nigra): kinetics and modelling study[J]. Powder Technology, 2017, 317: 23-30. |
36 | ISSABAYEVA G , AROUA M K , SULAIMAN N M N . Removal of lead from aqueous solutions on palm shell activated carbon[J]. Bioresource Technology, 2006, 97(18): 2350-2355. |
37 | KIKUCHI Y , QING Q , MACHIDA M, et al . Effect of ZnO loading to activated carbon on Pb2+ adsorption from aqueous solution[J]. Carbon, 2006, 44(2): 195-202. |
38 | GOKSUNGUR Y , UREN S , GUVENC U . Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass[J]. Bioresource Technology , 2005, 96(1): 103-109. |
39 | YAN C Z , LI G X , XUE P Y , et al . Competitive effect of Cu2+ and Zn2+ on the biosorption of Pb2+ by Myriophyllum spicatum [J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 721-728 |
40 | OZCAN A S , TUNALI S , AKAR T , et al . Biosorption of Pb2+ onto waste biomass of Phaseolus vulgaris L.: estimation of the equilibrium, kinetic and thermodynamic parameters[J]. Desalination, 2009, 244(1/2/3): |
188-198. | |
41 | JOHNS M M , MARSHALL W E , TOLES C A . Agricultural by-products as granular activated carbons for adsorbing dissolved metals and organics[J]. J. Chem. Technol. Biotechnol., 1998, 71(2): 131-140. |
42 | MOMCILOVIC M , PURENOVIC M , BOJIC A , et al . Removal of Pb2+ from aqueous solutions by adsorption onto pine cone activated carbon[J]. Desalination , 2011, 276(1/2/3): 53-59. |
43 | MAHAMADI C , NHARINGO T . Competitive adsorption of Pb2+, Cd2+ and Zn2+ ions onto Eichhornia crassipes in binary and ternary systems[J]. Bioresource Technology , 2010, 101(3): 859-864. |
44 | KOBYA M , DEMIRBAS E , SENTURK E , et al . Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone[J]. Bioresource Technology, 2005, 96(13): 1518-1521. |
45 | TATY C V , FAUDUET H , PORTE C , et al . Removal of Cd2+ and Pb2+, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris [J]. Journal of Hazardous Materials , 2003, 105(1/2/3): 121-142. |
46 | RONDA A , MARTIN-LARA M A , CALERO M , et al . Analysis of the kinetics of lead biosorption using native and chemically treated olive tree pruning[J]. Ecological Engineering , 2013, 5: 278-285. |
47 | MONDAL M K . Removal of Pb2+ from aqueous solution by adsorption using activated tea waste[J]. Korean Journal of Chemical Engineering, 2010, 27(1): 144-151. |
48 | CHEN G N , SHAH K J , SHI L , et al . Removal of Cd2+ and Pb2+ from aqueous solutions by synthetic mineral adsorbent: performance and mechanisms[J]. Applied Surface Science , 2017, 409: 296-305. |
49 | XIONG C H , YAO C P . Synthesis,characterization and application of triethylenetetramine modified polystyrene resin in removal of mercury, cadmium and lead from aqueous solutions[J]. Chemical Engineering Journal , 2009, 155(3): 844-850. |
50 | MADRAKIAN T , AFKHAMI A , ZADPOUR B , et al . New synthetic mercaptoethylamino homopolymer-modified maghemite nanoparticles for effective removal of some heavy metal ions from aqueous solution[J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 1160-1166. |
51 | KAKAVANDI B , JAFARI A J , KALANTARY R R , et al . Simultaneous adsorption of lead and aniline onto magnetically recoverable carbon: optimization, modeling and mechanism[J]. Journal of Chemical Technology and Biotechnology, 2016, 91(12): 3000-3010. |
52 | GUO Y G , LIU D F , ZHAO Y , et al . Synthesis of chitosan-functionalized MCM-41-A and its performance in Pb2+ removal from synthetic water[J]. Journal of The Taiwan Institute of Chemical Engineers, 2017, 71: 537-545. |
53 | LIU Y , LIU Z C , GAO J , et al . Selective adsorption behavior of Pb2+ by mesoporous silica SBA-15-supported Pb2+-imprinted polymer based on surface molecularly imprinting technique[J]. Journal of Hazardous Materials, 2011, 186(1): 197-205. |
54 | BASAGLIA A M , CORAZZA M Z , SEGATELLI M G , et al . Synthesis of Pb2+-imprinted poly(methacrylic acid) polymeric particles loaded with |
1-(2-pyridylazo)-2naphthol (PAN) for micro-solid phase preconcentration of Pb2+ on-line coupled to flame atomic absorption spectrometry[J]. RSC Advances, 2017, 7(52): 33001-33011. | |
55 | LIU P , JIANG L P , ZHU L X , et al . Synthesis of covalently crosslinked attapulgite/poly (acrylic acid-co-acrylamide) nanocomposite hydrogels and their evaluation as adsorbent for heavy metal ions[J]. Journal of Industrial and Engineering Chemistry, 2015, 23: 188-193. |
56 | MOROSANU I , TEODOSIU C , PADURARU C , et al . Biosorption of lead ions from aqueous effluents by rapeseed biomass[J]. New Biotechnology, 2017, 39: 110-124. |
57 | VARSHNEY S , JAIN P , SRIVASTAVA S . Application of ameliorated wood pulp to recover Cd2+, Pb2+, and Ni2+ from e-waste[J]. Journal of Material Cycles and Waste Management, 2017, 19(4): 1446-1456. |
58 | ZHOU N , CHEN H G , XI J T , et al . Biochars with excellent Pb2+ adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization[J]. Bioresource Technology, 2017, 232: 204-210. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[3] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[4] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[5] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[6] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[7] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[8] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[9] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[10] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[11] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
[12] | 李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
[13] | 白亚迪, 邓帅, 赵睿恺, 赵力, 杨英霞. 变温吸附碳捕集机组标准化测试方案探讨及性能实验[J]. 化工进展, 2023, 42(7): 3834-3846. |
[14] | 张雪伟, 黄亚继, 许月阳, 程好强, 朱志成, 李金壘, 丁雪宇, 王圣, 张荣初. 碱性吸附剂对燃煤烟气中SO3的吸附特性[J]. 化工进展, 2023, 42(7): 3855-3864. |
[15] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |