化工进展 ›› 2019, Vol. 38 ›› Issue (01): 30-44.DOI: 10.16085/j.issn.1000-6613.2018-1169
收稿日期:
2018-06-03
修回日期:
2018-09-24
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
骆广生
作者简介:
李严凯(1992—),男,博士研究生。E-mail:<email>li-yk09@foxmail.com</email>。|骆广生,教授,博士生导师。E-mail:<email>gsluo@tsinghua.edu.cn</email>。
基金资助:
Yankai LI(),Kai WANG,Guangsheng LUO()
Received:
2018-06-03
Revised:
2018-09-24
Online:
2019-01-05
Published:
2019-01-05
Contact:
Guangsheng LUO
摘要:
液液分散与液滴生成是化工生产最典型的多尺度动态过程之一,针对该类过程的精准控制是化工研究的难点与重点。近年来,伴随机械微加工与流体微量输运技术的快速兴起,基于微米尺度作用的微化工技术在液液分散与液滴生成的调控中展现出了显著优势,成为化工研究的前沿方向。本文针对近年来在微分散基本规律、微分散动态界面现象与微分散标准颗粒材料等领域的研究进展进行综述:围绕微分散基本规律,介绍了微尺度液滴破碎的主导作用力、液液微分散流型及微分散数值模拟方法;围绕微分散动态界面现象,分析了动态界面张力的变化规律及其影响因素;围绕微分散标准颗粒制备,简述了微分散颗粒制备的主流技术及其适用范围。同时,针对相关领域的发展方向进行了展望。
中图分类号:
李严凯, 王凯, 骆广生. 液液微分散及其用于标准颗粒制备的研究进展[J]. 化工进展, 2019, 38(01): 30-44.
Yankai LI, Kai WANG, Guangsheng LUO. Advances in liquid-liquid micro-dispersion and its applications in standard particle preparation[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 30-44.
触发因素/时间尺度 | 流型/时间尺度 | 动态界面张力的作用机制 | 动态界面张力的大小变化趋势(较平衡态) |
---|---|---|---|
表面活性剂的动态吸附/ms | Squeezing流/s | 充分吸附、达吸附平衡 | 不变— |
Dripping流/(ms~s) | 非充分吸附、未达吸附平衡 | 增大↑ | |
Jetting流/ms | 界面动态聚集(tip-streaming) | 减小↓ | |
互溶介质的相间传质/ms | Squeezing流/s | 充分传质、无动态效应 | 不变— |
Dripping流/(ms~s) | 非充分传质、非稳态 | 减小↓ | |
Jetting流/ms | 非充分传质、非稳态 | 减小↓ |
表1 不同触发因素与流型条件下动态界面张力的作用机制与大小变化趋势
触发因素/时间尺度 | 流型/时间尺度 | 动态界面张力的作用机制 | 动态界面张力的大小变化趋势(较平衡态) |
---|---|---|---|
表面活性剂的动态吸附/ms | Squeezing流/s | 充分吸附、达吸附平衡 | 不变— |
Dripping流/(ms~s) | 非充分吸附、未达吸附平衡 | 增大↑ | |
Jetting流/ms | 界面动态聚集(tip-streaming) | 减小↓ | |
互溶介质的相间传质/ms | Squeezing流/s | 充分传质、无动态效应 | 不变— |
Dripping流/(ms~s) | 非充分传质、非稳态 | 减小↓ | |
Jetting流/ms | 非充分传质、非稳态 | 减小↓ |
项目 | 有机聚合物微球 | 无机微球 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
尺寸/μm | 0.1~1 | 1~10 | 10~100 | 0.1~1 | 1~10 | 10~100 | |||||||
方法 | 乳液聚合 | 分散聚合 | 种子聚合 | 悬浮聚合 | 燃烧法 | 化学沉淀 | 微乳液 | 溶胶-凝胶 | 机械粉碎 | ||||
单分散性 | √ | √ | √ | √ | √ | ||||||||
表面性质 | √ | √ | √ | ||||||||||
通用性 | √ | √ | √ |
表 2 不同的标准颗粒传统制备方法比较
项目 | 有机聚合物微球 | 无机微球 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
尺寸/μm | 0.1~1 | 1~10 | 10~100 | 0.1~1 | 1~10 | 10~100 | |||||||
方法 | 乳液聚合 | 分散聚合 | 种子聚合 | 悬浮聚合 | 燃烧法 | 化学沉淀 | 微乳液 | 溶胶-凝胶 | 机械粉碎 | ||||
单分散性 | √ | √ | √ | √ | √ | ||||||||
表面性质 | √ | √ | √ | ||||||||||
通用性 | √ | √ | √ |
1 | JENSEN K F .Microchemical systems: status, challenges, and opportunities[J]. AIChE Journal, 1999, 45(10): 2051-2054. |
2 | JENSEN K F .Flow chemistry-microreaction technology comes of age[J]. AIChE Journal, 2017, 63(3): 858-869. |
3 | WHITESIDES G M .The origins and the future of microfluidics[J]. Nature, 2006, 442(7101): 368-373. |
4 | SHANG L , CHENG Y , ZHAO Y .Emerging droplet microfluidics[J]. Chemical Reviews, 2017, 117(12): 7964-8040. |
5 | NUNES J K , TSAI S , WAN J , et al .Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis[J]. Journal of physics D: Applied Physics, 2013, 11(46): 114002. |
6 | UTADA A S , CHU L Y , FERNANDEZ-NIEVES A , et al .Dripping, jetting, drops, and wetting: the magic of microfluidics[J]. MRS Bulletin, 2007, 32(9): 702-708. |
7 | BASARAN O A . Small-scale free surface flows with breakup: drop formation and emerging applications[J]. AIChE Journal,2002, 48(9): 1842-1848. |
8 | ADAMO A , BEINGESSNER R L , BEHNAM M , et al . On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system[J]. Science, 2016, 352(6281): 61-67. |
9 | MASCIA S , HEIDER P L , ZHANG H , et al .End-to-end continuous manufacturing of pharmaceuticals: integrated synthesis, purification, and final dosage formation[J]. Angewandte Chemie International Edition, 2013, 52(47): 12359-12363. |
10 | XIE L , SHEN Y , FRANKE D , et al .Characterization of indium phosphide quantum dot growth intermediates using MALDI-TOF mass spectrometry[J]. Journal of the American Chemical Society, 2016, 138(41): 13469-13472. |
11 | NIGHTINGALE A M , PHILLIPS T W , BANNOCK J H , et al .Controlled multistep synthesis in a three-phase droplet reactor[J]. Nature Communications, 2014, 5: 3777. |
12 | WANG K , LUO G .Microflow extraction: a review of recent development[J]. Chemical Engineering Science, 2017, 169: 18-33. |
13 | ADAMO A , HEIDER P L , WEERANOPPANANT N , et al .Membrane-based, liquid-liquid separator with integrated pressure control[J]. Industrial & Engineering Chemistry Research, 2013, 52(31): 10802-10808. |
14 | GU H , DUITS M H G , MUGELE F .Droplets formation and merging in two-phase flow microfluidics[J]. International Journal of Molecular Sciences, 2011, 12(4): 2572-2597. |
15 | MARRE S , JENSEN K F . Synthesis of micro and nanostructures in microfluidic systems[J]. Chemical Society Reviews, 2010, 39(3): 1183-1202. |
16 | XU S , NIE Z , SEO M , et al . Generation of monodisperse particles by using microfluidics: control over size, shape, and composition[J]. Angewandte Chemie International Edition, 2005, 117(5): 734-738. |
17 | MASON T G , BIBETTE J . Shear rupturing of droplets in complex fluids[J]. Langmuir, 1997, 13(17): 4600-4613. |
18 | KACI M , ARAB-TEHRANY E , DESJARDINS I , et al .Emulsifier free emulsion: comparative study between a new high frequency ultrasound process and standard emulsification processes[J]. Journal of Food Engineering, 2017, 194: 109-118. |
19 | KACI M , MEZIANI S , ARAB-TEHRANY E , et al .Emulsification by high frequency ultrasound using piezoelectric transducer: formation and stability of emulsifier free emulsion[J]. Ultrasonics Sonochemistry, 2014, 21(3): 1010-1017. |
20 | LEE C , LIN Y , LEE G .A droplet-based microfluidic system capable of droplet formation and manipulation[J]. Microfluidics and Nanofluidics, 2009, 6(5): 599-610. |
21 | SCHROEN K , BLIZNYUK O , MUIJLWIJK K , et al .Microfluidic emulsification devices: from micrometer insights to large-scale food emulsion production[J]. Current Opinion in Food Science, 2015, 3: 33-40. |
22 | SEEMANN R , BRINKMANN M , PFOHL T , HERMINGHAUS S .Droplet based microfluidics[J]. Reports on Progress in Physics, 2011, 1(75): 16601. |
23 | ROBERGE D M , DUCRY L , BIELER N , et al .Microreactor technology: a revolution for the fine chemical and pharmaceutical industries?[J]. Chemical Engineering & Technology, 2005, 28(3): 318-323. |
24 | AJAEV V S , HOMSY G M .Modeling shapes and dynamics of confined bubbles[J]. Annual Review of Fluid Mechanics, 2006, 38: 277-307. |
25 | DARHUBER A A , TROIAN S M .Principles of microfluidic actuation by modulation of surface stresses[J]. Annual Review of Fluid Mechanics, 2005, 37(1): 425-455. |
26 | 骆广生, 王凯, 徐建鸿, 等 .微化工过程研究进展[J]. 中国科学:化学, 2014, 44(9): 1404-1412. |
LUO GuangSheng , WANG Kai , XU JianHong , et al .Advances in research of microstructured chemical process[J]. SCIENTIA SINICA Chimica, 2014, 44(9): 1404-1412. | |
27 | GÜNTHER A , JENSEN K F .Multiphase microfluidics: from flow characteristics to chemical and materials synthesis[J]. Lab on a Chip, 2006, 6(12): 1487-1503. |
28 | RAYLEIGH L .On the instability of jets[J]. Proceedings of the London Mathematical Society, 1878, 1(1): 4-13. |
29 | PLATEAU J A F .Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires[M]. Paris: Gauthier-Villars, 1873. |
30 | AMBRAVANESWARAN B , SUBRAMANI H J , PHILLIPS S D , et al .Dripping-jetting transitions in a dripping faucet[J]. Physical Review Letters, 2004, 93(3): 34501. |
31 | HARKINS W D , BROWN F E .The determination of surface tension (free surface energy), and the weight of falling drops—the surface tension of water and benzene by the capillary height method[J]. Journal of the American Chemical Society, 1919, 41: 499-524. |
32 | VINET B , GARANDET J P , CORTELLA L .Surface tension measurements of refractory liquid metals by the pendant drop method under ultrahigh vacuum conditions: extension and comments on Tate's law[J]. Journal of Applied Physics, 1993, 73(8): 3830-3834. |
33 | CARDOSO V , DIAS O J .Rayleigh-Plateau and Gregory-Laflamme instabilities of black strings[J]. Physical Review Letters, 2006, 96(18): 181601. |
34 | GARSTECKI P , GITLIN I , DILUZIO W , et al .Formation of monodisperse bubbles in a microfluidic flow-focusing device[J]. Applied Physics Letters, 2004, 85(13): 2649-2651. |
35 | GANAN-CALVO A M , GORDILLO J M .Perfectly monodisperse microbubbling by capillary flow focusing[J]. Physical Review Letters, 2001, 87(27): 274501. |
36 | UTADA A S , FERNANDEZ-NIEVES A , STONE H A , et al .Dripping to jetting transitions in coflowing liquid streams[J]. Physical Review Letters, 2007, 99(9): 094502. |
37 | DE MENECH M , GARSTECKI P , JOUSSE F , et al .Transition from squeezing to dripping in a microfluidic T-shaped junction[J]. Journal of Fluid Mechanics, 2008, 595: 141-161. |
38 | GARSTECKI P , FUERSTMAN M J , STONE H A , et al .Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up[J]. Lab on a Chip, 2006, 6(3): 437-446. |
39 | SU Y , KUIJPERS K , HESSEL V , et al .A convenient numbering-up strategy for the scale-up of gas-liquid photoredox catalysis in flow[J]. Reaction Chemistry & Engineering, 2016, 1(1): 73-81. |
40 | SHEN Y , ABOLHASANI M , CHEN Y , et al . In-situ microfluidic study of biphasic nanocrystal ligand-exchange reactions using an oscillatory flow reactor[J]. Angewandte Chemie International Edition, 2017, 56(51): 16333-16337. |
41 | COURTNEY M , CHEN X , CHAN S , et al .Droplet microfluidic system with on-demand trapping and releasing of droplet for drug screening applications[J]. Analytical Chemistry, 2016, 89(1): 910-915. |
42 | WANG K , LU Y C , XU J H , et al . Liquid-liquid micro-dispersion in a double-pore T-shaped microfluidic device[J]. Microfluidics and Nanofluidics, 2009, 6(4): 557-564. |
43 | YIN S , YANG S , WANG C , et al .Magnetic-directed assembly from Janus building blocks to multiplex molecular-analogue photonic crystal structures[J]. Journal of the American Chemical Society, 2016, 138(2): 566-573. |
44 | DU G , FANG Q , DEN TOONDER J M J .Microfluidics for cell-based high throughput screening platforms—A review[J]. Analytica Chimica Acta, 2016, 903: 36-50. |
45 | LAN F , DEMAREE B , AHMED N , et al .Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding[J]. Nature Biotechnolog, 2017, 35(7): 640-646. |
46 | CASTRO-HERNANDEZ E , GUNDABALA V , FERNANDEZ-NIEVES A , et al .Scaling the drop size in coflow experiments[J]. New Journal of Physics, 2009, 11(7): 75021. |
47 | CASTRO-HERNANDEZ E , VAN HOEVE W , LOHSE D , et al .Microbubble generation in a co-flow device operated in a new regime[J]. Lab on a Chip, 2011, 11(12): 2023-2029. |
48 | XIA L , CUI Q , SUO X , et al .Efficient, selective, and reversible SO2 capture with highly crosslinked ionic microgels via a selective swelling mechanism[J]. Advanced Functional Materials, 2018, 28(13): 1704292. |
49 | LI Y K , WANG K , LUO G S .Microdroplet generation with dilute surfactant concentration in a modified T-junction device[J]. Industrial & Engineering Chemistry Research, 2017, 56(42): 12131-12138. |
50 | LI Y K , WANG K , XU J H , et al .A capillary-assembled micro-device for monodispersed small bubble and droplet generation[J]. Chemical Engineering Journal, 2016, 293: 182-188. |
51 | LI Y K , LIU G T , XU J H , et al .A microdevice for producing monodispersed droplets under a jetting flow[J]. RSC Advances, 2015, 5(35): 27356-27364. |
52 | GORDILLO J M , CHENG Z , GANAN-CALVO A M , et al .A new device for the generation of microbubbles[J]. Physics of Fluids, 2004, 16(8): 2828-2834. |
53 | ANNA S L , BONTOUX N , STONE H A .Formation of dispersions using "flow focusing" in microchannels[J]. Applied Physics Letters, 2003, 82(3): 364-366. |
54 | GORDILLO J M , GA ÁN-CALVO A M , PÉREZ-SABORID M .Monodisperse microbubbling: absolute instabilities in coflowing gas-liquid jets[J]. Physics of Fluids, 2001, 13(12): 3839-3842. |
55 | CHONG Z Z , TAN S H , GANAN-CALVO A M , et al .Active droplet generation in microfluidics[J]. Lab on a Chip, 2016, 16(1): 35-58. |
56 | ZHU P , WANG L .Passive and active droplet generation with microfluidics: a review[J]. Lab on a Chip, 2016, 17(1): 34-75. |
57 | 付宇航, 赵述芳, 王文坦, 等 . 多相/多组分LBM模型及其在微流体领域的应用[J]. 化工学报, 2014, 65(7): 2535-2543. |
FU Y H , ZHAO S F , WANG W T , et al . Appliction of lattice Boltzmann method for simalation of Multiphase/Multicomponent flow in microfluidics[J]. CIESC J. 2014, 65(7): 2535-2543. | |
58 | WÖRNER M .Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications[J]. Microfluidics and Nanofluidics, 2012, 12(6): 841-886. |
59 | GUNSTENSEN A K , ROTHMAN D H , ZALESKI S , et al .Lattice Boltzmann model of immiscible fluids[J]. Physical Review A, 1991, 43(8): 4320-4327. |
60 | RIAUD A , WANG K , LUO G .A combined Lattice-Boltzmann method for the simulation of two-phase flows in microchannel[J]. Chemical Engineering Science, 2013, 99: 238-249. |
61 | HIRT C W , NICHOLS B D .Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 1(39): 201-225. |
62 | YANG X , JAMES A J , LOWENGRUB J , et al .An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids[J]. Journal of Computational Physics, 2006, 217(2): 364-394. |
63 | LV X , ZOU Q , ZHAO Y , et al .A novel coupled level set and volume of fluid method for sharp interface capturing on 3D tetrahedral grids[J]. Journal of Computational Physics, 2010, 229(7): 2573-2604. |
64 | OSHER S , SETHIAN J A .Fronts propagating with curvature- dependent speed: algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988, 1(79): 12-49. |
65 | HARTMANN D , MEINKE M , SCHRÖDER W .Differential equation based constrained reinitialization for level set methods[J]. Journal of Computational Physics, 2008, 227(14): 6821-6845. |
66 | HARTMANN D , MEINKE M , SCHRÖDER W .The constrained reinitialization equation for level set methods[J]. Journal of Computational Physics, 2010, 229(5): 1514-1535. |
67 | MIN C .On reinitializing level set functions[J]. Journal of Computational Physics, 2010, 229(8): 2764-2772. |
68 | GHADIALI S N , GAVER D P .The influence of non-equilibrium surfactant dynamics on the flow of a semi-infinite bubble in a rigid cylindrical capillary tube[J]. Journal of Fluid Mechanics,2003, 478: 165-196. |
69 | WANG K , LU Y C , XU J H , et al .Determination of dynamic interfacial tension and its effect on droplet formation in the T-shaped microdispersion process[J]. Langmuir, 2009, 25(4): 2153-2158. |
70 | BARET J , KLEINSCHMIDT F , EL HARRAK A , et al .Kinetic aspects of emulsion stabilization by surfactants: a microfluidic analysis[J]. Langmuir, 2009, 25(11): 6088-6093. |
71 | EGGLETON C D , STEBE K J .An adsorption-desorption-controlled surfactant on a deforming droplet[J]. Journal of Colloid and Interface Science, 1998, 208(1): 68-80. |
72 | FERRI J K , STEBE K J . Which surfactants reduce surface tension faster? A scaling argument for diffusion-controlled adsorption[J]. Advances in Colloid and Interface Science, 2000, 85(1): 61-97. |
73 | YANG L , LIU G , LUO G S , et al . Investigation of dynamic surface tension in gas-liquid absorption using a microflow interfacial tensiometer[J]. Reaction Chemistry & Engineering, 2017, 2(2): 232-238. |
74 | LAN W , WANG C , GUO X , et al . Study on the transient interfacial tension in a microfluidic droplet formation coupling interphase mass transfer process[J]. AIChE Journal, 2016, 62(7): 2542-2549. |
75 | WANG K , ZHANG L , ZHANG W , et al .Mass-transfer-controlled dynamic interfacial tension in microfluidic emulsification processes[J]. Langmuir, 2016, 32(13): 3174-3185. |
76 | CHANG C , FRANSES E I .Adsorption dynamics of surfactants at the air/water interface: a critical review of mathematical models, data, and mechanisms[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 100: 1-45. |
77 | VAN DER GRAAF S , SCHROËN C G P H , VAN DER SMAN R G M , et al .Influence of dynamic interfacial tension on droplet formation during membrane emulsification[J]. Journal of Colloid and Interface Science, 2004, 277(2): 456-463. |
78 | XU J H , DONG P F , ZHAO H , et al .The dynamic effects of surfactants on droplet formation in coaxial microfluidic devices[J]. Langmuir, 2012, 28(25): 9250-9258. |
79 | WANG X , RIAUD A , WANG K , et al .Pressure drop-based determination of dynamic interfacial tension of droplet generation process in T-junction microchannel[J]. Microfluidics and Nanofluidics, 2015, 18(3): 503-512. |
80 | EGGLETON C D , TSAI T M , STEBE K J .Tip streaming from a drop in the presence of surfactants[J]. Physical Review Letters, 2001, 87(4): 48302. |
81 | ANNA S L , MAYER H C .Microscale tipstreaming in a microfluidic flow focusing device[J]. Physics of Fluids, 2006, 18(12): 121512. |
82 | JOSEPHIDES D N , SAJJADI S .Increased drop formation frequency via reduction of surfactant interactions in flow-focusing microfluidic devices[J]. Langmuir, 2015, 31(3): 1218-1224. |
83 | FERNANDEZ J M , HOMSY G M .Chemical reaction-driven tip-streaming phenomena in a pendant drop[J]. Physics of Fluids, 2004, 16(7): 2548-2555. |
84 | WARD T , FAIVRE M , STONE H A .Drop production and tip-streaming phenomenon in a microfluidic flow-focusing device via an interfacial chemical reaction[J]. Langmuir, 2010, 26(12): 9233-9239. |
85 | JEONG W , LIM J , CHOI J , et al .Controlled generation of submicron emulsion droplets via highly stable tip-streaming mode in microfluidic devices[J]. Lab on a Chip, 2012, 12(8): 1446-1453. |
86 | MOYLE T M , WALKER L M , ANNA S L .Controlling thread formation during tip-streaming through an active feedback control loop[J]. Lab on a Chip, 2013, 13(23): 4534-4541. |
87 | KIM H , MULLER K , SHARDT O , et al .Solutal Marangoni flows of miscible liquids drive transport without surface contamination[J]. Nature Physic, 2017, 13(11): 1105. |
88 | WANG K , XU J , LIU G , et al .Role of interfacial force on multiphase microflow—an important meso-scientific issue[J]. Advances in Chemical Engineering, 2015, 47: 163-191. |
89 | HUAWEI S , YANGCHENG LÜ , KAI W , et al .An experimental study of liquid-liquid microflow pattern maps accompanied with mass transfer[J]. Chinese Journal of Chemical Engineering, 2012, 20(1): 18-26. |
90 | 张吉松, 刘国涛, 王凯, 等 . 微通道内传递对液液分散过程的影响规律[J]. 化工学报, 2015, 66(8): 2940-2946. |
ZHANG Jisong , LIU Guotao , WANG Kai , et al .Effect of transfer on liquid-liquid dispersion in microchannels[J]. CIESC Journal, 2015, 66(8): 2940-2946. | |
91 | DESHPANDE J B , KULKARNI A A .Effect of interfacial mass transfer on the dispersion in segmented flow in straight capillaries[J]. AIChE Journal, 2015, 61(12): 4294-4308. |
92 | WEGENER M , PASCHEDAG A R .Mass transfer enhancement at deformable droplets due to Marangoni convection[J]. International Journal of Multiphase Flow, 2011, 37(1): 76-83. |
93 | LU P , WANG Z , YANG C , et al .Experimental investigation and numerical simulation of mass transfer during drop formation[J]. Chemical Engineering Science, 2010, 65(20): 5517-5526. |
94 | VLADISAVLJEVIĆ G T , EKANEM E E , ZHANG Z , et al .Long-term stability of droplet production by microchannel (step) emulsification in microfluidic silicon chips with large number of terraced microchannels[J]. Chemical Engineering Journal, 2018, 333: 380-391. |
95 | ARSHADY R .Suspension, emulsion, and dispersion polymerization: a methodological survey[J]. Colloid and Polymer Science. 1992, 270(8): 717-732. |
96 | SAGGESE C , FERRARIO S , CAMACHO J , et al .Kinetic modeling of particle size distribution of soot in a premixed burner-stabilized stagnation ethylene flame[J]. Combustion and Flame, 2015, 162(9): 3356-3369. |
97 | HENCH L L , WEST J K .The sol-gel process[J]. Chemical Reviews, 1990, 90(1): 33-72. |
98 | KENDALL K . The impossibility of comminuting small particles by compression[J]. Nature, 1978, 272(5655): 710-711. |
99 | ELBERT D L .Liquid-liquid two-phase systems for the production of porous hydrogels and hydrogel microspheres for biomedical applications: a tutorial review[J]. Acta Biomaterialia, 2011, 7(1): 31-56. |
100 | DONG P , XU J , ZHAO H , et al .Preparation of 10μm scale monodispersed particles by jetting flow in coaxial microfluidic devices[J]. Chemical Engineering Journal, 2013, 214: 106-111. |
101 | GUO S , YAO T , JI X , et al .Versatile preparation of nonspherical multiple hydrogel core PAM PEG emulsions and hierarchical hydrogel microarchitectures[J]. Angewandte Chemie International Edition, 2014, 53(29): 7504-7509. |
102 | LIU H , QIAN X , WU Z , et al .Microfluidic synthesis of QD-encoded PEGDA microspheres for suspension assay[J]. Journal of Materials Chemistry B, 2016, 3(4): 482-488. |
103 | KIM J , UTADA A S , FERNÁNDEZ-NIEVES A , et al .Fabrication of monodisperse gel shells and functional microgels in microfluidic devices[J]. Angewandte Chemie International Edition, 2007, 46(11): 1819-1822. |
104 | CHAU M , ABOLHASANI M , THÉRIEN-AUBIN H , et al .Microfluidic generation of composite biopolymer microgels with tunable compositions and mechanical properties[J]. Biomacromolecules, 2014, 15(7): 2419-2425. |
105 | TAN W H , TAKEUCHI S .Monodisperse alginate hydrogel microbeads for cell encapsulation[J]. Advanced Materials, 2007, 19(18): 2696-2701. |
106 | HUNG L , TEH S , JESTER J , et al .PLGA micro/nanosphere synthesis by droplet microfluidic solvent evaporation and extraction approaches[J]. Lab on a Chip, 2010, 10(14): 1820-1825. |
107 | WATANABE T , ONO T , KIMURA Y .Continuous fabrication of monodisperse polylactide microspheres by droplet-to-particle technology using microfluidic emulsification and emulsion-solvent diffusion[J]. Soft Matter, 2011, 7(21): 9894-9897. |
[1] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[2] | 陶梦琦, 刘美红, 康宇驰. 基于micro-PIV的微通道内流体绕流单微圆柱和并联双微圆柱流场特性[J]. 化工进展, 2023, 42(6): 2836-2844. |
[3] | 宋超, 叶学民, 李春曦. 纳米颗粒与表面活性剂的自组装行为对硅油-水界面性质影响的分子动力学[J]. 化工进展, 2022, 41(S1): 366-375. |
[4] | 宋飞, 王君妍, 何林, 隋红, 李鑫钢. 表面活性剂强化重质油矿溶剂萃取残渣中残留溶剂鼓泡分离[J]. 化工进展, 2022, 41(4): 2007-2014. |
[5] | 张大山, 陈慧娴, 毛林强, 张文艺. 碱性无机盐-表面活性剂协同处理炼化油泥[J]. 化工进展, 2022, 41(1): 468-475. |
[6] | 王怿兴, 杨敬一, 胡春付, 徐心茹. SAGD稠油采出液高效分离中YM型破乳剂的合成及性能[J]. 化工进展, 2022, 41(1): 382-390. |
[7] | 徐波, 蒋国斌, 于劲磊, 胡金燕, 赵靓, 徐炳科. 不同表面活性剂对单相微乳液特性的影响[J]. 化工进展, 2021, 40(S1): 350-356. |
[8] | 黄红菱, 于畅, 邱介山. 化学工程视野下的电化学能源转换与存储[J]. 化工进展, 2021, 40(9): 4696-4702. |
[9] | 刘明宝, 郭万中, 印万忠. 油酸钠与胲铵类药剂协同浮选金红石的机理[J]. 化工进展, 2020, 39(8): 3362-3370. |
[10] | 汪伟,彭减,林硕,谢锐,巨晓洁,刘壮,褚良银. 智能微流控检测芯片的构建及其Pb2+检测性能[J]. 化工进展, 2020, 39(1): 42-48. |
[11] | 尧磊,彭杰,张剑波,张扬军. 质子交换膜燃料电池冷启动的数值模拟[J]. 化工进展, 2019, 38(9): 4029-4035. |
[12] | 邹思宇,凌二锁,乐淑荣,孙胜鹏,吴张雄,陈晓东,吴铎,肖杰. 臭氧催化氧化反应器模拟与分析[J]. 化工进展, 2019, 38(9): 3969-3978. |
[13] | 张秀, 谢锐, 汪伟, 巨晓洁, 刘壮, 褚良银. 豆荚结构聚乙烯醇缩丁醛/氧化铝复合相变纤维的制备及性能[J]. 化工进展, 2019, 38(02): 993-999. |
[14] | 黄斌, 张威, 王捷, 傅程. 驱油剂对三元复合驱含油污水中油滴稳定性的影响[J]. 化工进展, 2019, 38(02): 1053-1061. |
[15] | 汪伟, 苏瑶瑶, 刘壮, 巨晓洁, 谢锐, 褚良银. 微流控法可控构建微尺度功能材料[J]. 化工进展, 2019, 38(01): 421-433. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |