1 |
CHENC Z, WANGL G, HUANGY. Crosslinking of the electrospun polyethylene glycol/cellulose acetate composite fibers as shape- stabilized phase change materials[J]. Materials Letters, 2009, 63(5): 569-571.
|
2 |
REZAEIB, ASKARIM, SHOUSHTARIA M, et al. The effect of diameter on the thermal properties of the modeled shape-stabilized phase change nanofibers (PCNs)[J]. Journal of Thermal Analysis & Calorimetry, 2014, 118(3): 1619-1629.
|
3 |
CHENC Z, WANGL G, HUANGY. Electrospun phase change fibers based on polyethylene glycol/cellulose acetate blends[J]. Applied Energy, 2011, 88(9): 3133-3139.
|
4 |
张兴祥, 王馨, 吴文健, 等. 相变材料胶囊制备与应用[M]. 北京:化学工业出版社, 2009.
|
|
ZHANGX X, WANGX, WUW J, et al. Preparation and application of encapsulated phase change materials[M]. Beijing:Beijing Chemical Industry Press, 2009.
|
5 |
ZALBAB, MARINJ M, CABEZAL F, et al. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications[J]. Applied Thermal Engineering, 2003, 23(3): 251-283.
|
6 |
ZHOUS T, CHENY, ZOUH W, et al. Thermally conductive composites obtained by flake graphite filling immiscible polyamide 6/polycarbonate blends[J]. Thermochimica Acta, 2013, 566:84-91.
|
7 |
LIA, ZHANGC, ZHANGY F. Thermally conductivities of PU composites with graphene aerogels reduced by different methods[J]. Composites:Part A, 2017, 103:161-167.
|
8 |
KHANW S, ASMATULUR, AHMEDI, et al. Thermal conductivities of electrospun PAN and PVP nanocomposite fibers incorporated with MWCNTs and NiZn ferrite nanoparticles[J]. International Journal of Thermal Sciences, 2013, 71:74-79.
|
9 |
KEH Z. Morphology and thermal performance of quaternary fatty acid eutectics/polyurethane/Ag form-stable phase change composite fibrous membranes[J]. Journal of Thermal Analysis & Calorimetry, 2017, 129(3): 1533-1545.
|
10 |
KEH Z. Preparation of electrospun LA-PA/PET/Ag form-stable phase change composite fibers with improved thermal energy storage and retrieval rates via electrospinning and followed by UV irradiation photoreduction method[J]. Fibers & Polymers, 2016, 17(8): 1198-1205.
|
11 |
KEH Z, PANGZ Y, PENGB, et al. Thermal energy storage and retrieval properties of form-stable phase change nanofibrous mats based on ternary fatty acid eutectics/polyacrylonitrile composite by magnetron sputtering of silver[J]. Journal of Thermal Analysis & Calorimetry, 2016, 123(2): 1293-1307.
|
12 |
GOLESTANEHS I, KARIMIG, BABAPOORA, et al. Thermal performance of co-electrospun fatty acid nanofiber composites in the presence of nanoparticles[J]. Applied Energy, 2018, 212:552-564.
|
13 |
BABAPOORA, KARIMIG, KHORRAMM. Fabrication and characterization of nanofiber-nanoparticle-composites with phase change materials by electrospinning[J]. Applied Thermal Engineering, 2016, 99:1225-1235.
|
14 |
CAIY B, ZONGX, ZHANGJ J, et al. The improvement of thermal stability and conductivity via incorporation of carbon nanofibers into electrospun ultrafine composite fibers of lauric acid/polyamide 6 phase change materials for thermal energy storage[J]. International Journal of Green Energy, 2014, 11(8): 861-875.
|
15 |
CAIY B, XUX L, GAOC T, et al. Effects of carbon nanotubes on morphological structure, thermal and flammability properties of electrospun composite fibers consisting of lauric acid and polyamide 6 as thermal energy storage materials[J]. Fibers & Polymers, 2012, 13(7): 837-845.
|
16 |
CAIY B, GAOC T, ZHANGT, et al. Influences of expanded graphite on structural morphology and thermal performance of composite phase change materials consisting of fatty acid eutectics and electrospun PA6 nanofibrous mats[J]. Renewable Energy, 2013, 57(3): 163-170.
|
17 |
KEH Z, PANGZ Y, XUY F, et al. Graphene oxide improved thermal and mechanical properties of electrospun methyl stearate/ polyacrylonitrile form-stable phase change composite nanofibers[J]. Journal of Thermal Analysis & Calorimetry, 2014, 117(1): 109-122.
|
18 |
ZONGX, CAIY B, SUNG Y, et al. Fabrication and characterization of electrospun SiO2 nanofibers absorbed with fatty acid eutectics for thermal energy storage/retrieval[J]. Solar Energy Materials & Solar Cells, 2015, 132:183-190.
|
19 |
DAIL M, CHANGD W, BAEKJ B, et al. Carbon nanomaterials for advanced energy conversion and storage[J]. Small, 2012, 8(8): 1130-1166.
|
20 |
JIANS J, ZHUJ, JIANGS H, et al. Nanofibers with diameter below one nanometer from electrospinning[J]. RSC Advances, 2018, 8(9): 4794-4802.
|
21 |
GOLESTANEHS I, MOSALLANEJADA, KARIMIG, et al. Fabrication and characterization of phase change material composite fibers with wide phase-transition temperature range by co-electrospinning method[J]. Applied Energy, 2016, 182:409-417.
|
22 |
BABAPOORA, KARIMIG, GOLESTANEHS I, et al. Coaxial electro-spun PEG/PA6 composite fibers: fabrication and characterization[J]. Applied Thermal Engineering, 2017, 118:398-407.
|
23 |
温国清, 谢锐, 巨晓洁, 等. 多壁碳纳米管/聚乙烯醇缩丁醛复合相变纤维的制备与性能[J]. 化工进展, 2015, 34(10): 3688-3718.
|
|
WENG Q, XIER, JUX J, et al. Preparation and properties of MWNT/polyvinyl butyral composite phase change fibers[J]. Chemical Industry and Engineering Process, 2015, 34(10): 3688-3718.
|
24 |
YUY, WENH, MA J Y, et al. Flexible fabrication of biomimetic bamboo-like hybrid microfibers[J]. Advanced Materials, 2014, 26(16): 2494-2499.
|
25 |
HEX H, WANGW, DENGK, et al. Microfluidic fabrication of chitosan microfibers with controllable internals from tubular to peapod-like structures[J]. RSC Advances, 2015, 5(2): 928-936.
|
26 |
LIANGW G, YANGC, WENG Q, et al. A facile and controllable method to encapsulate phase change materials with non-toxic and biocompatible chemicals[J]. Applied Thermal Engineering, 2014, 70(1): 817-826.
|
27 |
WENG Q, XIER, LIANGW G, et al. Microfluidic fabrication and thermal characteristics of core-shell phase change microfibers with high paraffin content[J]. Applied Thermal Engineering, 2015, 87:471-480.
|
28 |
孙少兴, 谢锐, 巨晓洁, 等.同轴静电纺丝制备低温相变纤维及其性能研究[J]. 化工新型材料, 2016, 44(8): 59-65.
|
|
SUNS X, XIER, JUX J, et al. Preparation and performance of nanofiber with low phase change temperature via coaxial electrospinning[J]. New Chemical Materials, 2016, 44(8): 59-65.
|