[1] NANEKAR S, DHOTE M, KASHYAP S, et al. Microbe assisted phytoremediation of oil sludge and role of amendments:a mesocosm study[J]. International Journal of Environmental Science and Technology, 2013, 12(1):193-202.
[2] CERNIGLIA C E. Biodegradation of polycyclic aromatic hydrocarbons[M]. Amsterdam:Springer, 1992:227-244.
[3] 王洪涛, 罗剑, 李雨松, 等. 石油污染物在土壤中运移的数值模拟初探[J]. 环境科学学报, 2000, 20(6):755-760. WANG Hongtao, LUO Jian, LI Yusong, et al. Numerical simulation of petroleum pollutant transport in soil[J]. Acta Scientiae Circumstantiae, 2000, 20(6):755-760.
[4] 赵东风, 赵朝成, 王联社, 等. 石油类污染物在土壤中的迁移渗透规律[J]. 中国石油大学学报(自然科学版), 2000, 24(3):64-66. ZHAO Dongfeng, ZHAO Chaocheng, WANG Lianshe, et al. Study on migration and penetrating law of oil pollutant in soil[J]. Journal of the University of Petroleum, China(Edition of Natural Science), 2000, 24(3):64-66.
[5] WALTER T, EDERER H J, FORST C, et al. Sorption of selected polycyclic aromatic hydrocarbons on soils in oil-contaminated systems[J]. Chemosphere, 2000, 41(3):387-397.
[6] TYAGI M, DA FONSECA M R, DE CARVALHO C C C R. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes[J]. Biodegradation, 2011, 22(2):231-241.
[7] ZHOU Q, SUN F, LIU R. Joint chemical flushing of soils contaminated with petroleum hydrocarbons[J]. Environment International, 2005, 31(6):835-839.
[8] 国务院. 国务院关于印发土壤污染防治行动计划的通知[EB/OL].[2016-05-28]. http://www.gov.cn/zhengce/content/2016-05/31/content_5078377.htm. State Council. Notice of the State Council on the action plan for the prevention and control of soil pollution[EB/OL].[2016-05-28]. http://www.gov.cn/zhengce/content/2016-05/31/content_5078377.htm.
[9] LAU E V, GAN S, NG H K, et al. Extraction agents for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil in soil washing technologies[J]. Environmental Polluttion, 2014, 184(1):640.
[10] KUBATOVA A, JANSEN B, VAUDOISOT J F, et al. Thermodynamic and kinetic models for the extraction of essential oil from savory and polycyclic aromatic hydrocarbons from soil with hot(subcritical) water and supercritical CO2[J]. Journal of Chromatography A, 2002, 975(1):175-188.
[11] BARTLE K D, BODDINGTON T, CLIFFORD A A, et al. The effect of solubility on the kinetics of dynamic supercritical-fluid extraction[J]. Journal of Supercritical Fluids, 1992, 5(3):207-212.
[12] ZHANG P, XU Z, LIU Q, et al. Mechanism of oil detachment from hybrid hydrophobic and hydrophilic surface in aqueous solution[J]. Journal of Chemical Physics, 2014, 140(16):1787-1795.
[13] YUAN S, WANG S, WANG X, et al. Molecular dynamics simulation of oil detachment from calcite surface in aqueous surfactant solution[J]. Computational and Theoretical Chemistry, 2016, 1092:82-89.
[14] CHEN J, SI H, CHEN W. Molecular dynamics study of oil detachment from an amorphous silica surface in water medium[J]. Applied Surface Science, 2015, 353:670-678.
[15] LIU Q, YUAN S, YAN H, et al. Mechanism of oil detachment from a silica surface in aqueous surfactant solutions:molecular dynamics simulations[J]. Journal of Physical Chemistry B, 2012, 116(9):2867-2875.
[16] LI L, CHEN B H. Solubilization of model polycyclic aromatic hydrocarbons by nonionic surfactants[J]. Chemical Engineering Science, 2002, 57(14):2825-2835.
[17] SAARI E, PERAMAKI P, JALONEN J. Evaluating the impact of extraction and cleanup parameters on the yield of total petroleum hydrocarbons in soil[J]. Analytical & Bioanalytical Chemistry, 2008, 392(6):1231-1240.
[18] SUI H, HUA Z, LI X, et al. Influence of soil and hydrocarbon properties on the solvent extraction of high-concentration weathered petroleum from contaminated soils[J]. Environmental Science & Pollution Research International, 2014, 21(9):5774-5784.
[19] TANG J, QU Z, LUO J, et al. Molecular dynamics simulations of the oil-detachment from the hydroxylated silica surface:effects of surfactants, electrostatic interactions, and water flows on the water molecular channel formation[J]. Journal of Physical Chemistry B, 2018, 122(6):1905-1918.
[20] WU G Z, ZHU X Z, JI H Q, et al. Molecular modeling of interactions between heavy crude oil and the soil organic matter coated quartz surface[J]. Chemosphere, 2015, 119:242-249.
[21] ZHONG J, WANG P, ZHANG Y, et al. Adsorption mechanism of oil components on water-wet mineral surface:a molecular dynamics simulation study[J]. Energy, 2013, 59:295-300.
[22] KELLER K S, OLSSON M H M, YANG M, et al. Adsorption of ethanol and water on calcite:dependence on surface geometry and effect on surface behavior[J]. Langmuir, 2015, 31(13):3847-3853.
[23] ZHU X Z, CHEN D Y, ZHANG Y, et al. Insights into the oil adsorption and cyclodextrin extraction process on rough silica surface by molecular dynamics simulation[J]. Journal of Physical Chemistry C, 2018, 122(5):2997-3005.
[24] BUSSI G, DONADIO D, PARRINELLO M. Canonical sampling through velocity rescaling[J]. Journal of Chemical Physics, 2007, 126(1):014101.
[25] CYGAN R T, LIANG J J, KALINICHEV A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. Journal of Physical Chemistry B, 2004, 108(4):1255-1266.
[26] WRIGHT L B, WALSH T R. First-principles molecular dynamics simulations of NH4+ and CH3COO- adsorption at the aqueous quartz interface[J]. Journal of Chemical Physics, 2012, 137(22):4066.
[27] EMAMI F S, PUDDU V, BERRY R J, et al. Force field and a surface model database for silica to simulate interfacial properties in atomic resolution[J]. Chemistry of Materials, 2014, 26(8):2647-2658.
[28] UNDERWOOD T, ERASTOVA V, CUBILLAS P, et al. Molecular dynamic simulations of montmorillonite-organic interactions under varying salinity:an insight into enhanced oil recovery[J]. Journal of Physical Chemistry C, 2015, 119(13):7282-7294.
[29] VAN D S D, LINDAHL E, HESS B, et al. Gromacs:fast, flexible, and free[J]. Journal of Computational Chemistry, 2015, 26(16):1701-1718.
[30] DARDEN T, YORK D, PEDERSEN L. Particle mesh Ewald:an N·lg(N) method for Ewald sums in large systems[J]. Journal of Chemical Physics, 1993, 98(12):10089-10092. |