[1] 周义朋, 沈照理, 史维浚, 等. 地浸采铀工艺分类方法的探讨[J]. 有色金属(冶炼部分), 2015(1):37-41. ZHOU Yipeng, SHEN Zhaoli, SHI Weijuan, et al. Discussion on technology classification of in-situ leaching uranium mining[J]. Nonferrous Metals(Extractive Metallurgy), 2015(1):37-41.
[2] 苏学斌, 刘乃忠, 沈红伟, 等. 新疆某铀矿空气预氧化矿层地浸采铀现场实验[J]. 金属矿山, 2006(12):33-36. SU Xuebin, LIU Naizhong, SHEN Hongwei, et al. Field test on in-situ leaching uranium mining by air pre-oxidation of ore stratum in Xinjiang[J]. Metal Mine, 2006(12):33-36.
[3] 王清良, 黄爱武, 杨金辉, 等. 过氧化氢的氧化特性及其在不同介质中的分解行为研究[J]. 矿冶, 2005, 14(1):59-61. WANG Qingliang, HUANG Aiwu, YANG Jinhui, et al. Study on decomposition characteristic of H2O2 in different mediums[J]. Mining and Metallurgy, 2005, 14(1):59-61.
[4] 史文革, 蔡萍莉. 硝酸盐作酸法地浸采铀氧化剂的分解机理探讨[J]. 南华大学学报(自然科学版), 2010, 24(3):40-43. SHI Wenge, CAI Pingli. Nitrate for acid in-situ leaching of uranium oxidant decomposition mechanism[J]. Journal of Nanhua University (Science & Technology), 2010, 24(3):40-43.
[5] 周义朋, 吉宏斌, 孙占学, 等. 酸性含Fe3+溶液作用下铀的溶解迁移特征[J]. 地质学报, 2016, 90(12):3554-3562. ZHOU Yipeng, JI Hongbin, SUN Zhanxue, et al. Uranium migration kinetics in acid solution containing ferric iron[J]. Acta Geologica Sinica, 2016, 90(12):3554-3562.
[6] 杨维涨, 伍云辉, 尹桂芳, 等. 512矿床微生物浸铀实验菌液培养技术研究[C]//全国铀矿大基地建设学术研讨会论文集(下). 2012. YANG Weizhang, WU Yunhui, YIN Guifang, et al. The reseach on bacterial culture technology of microbiogical leaching uranium test at 512 deposit[C]//The Construction of the National Conference on Uranium Mining Base Set. 2012.
[7] 王清良, 胡凯光, 刘迎九, 等. 伊宁铀矿512矿床地浸中细菌代替双氧水初步实验研究[J]. 铀矿冶, 1999, 18(4):262-268. WANG Qingliang, HU Kaiguang, LIU Yingjiu, et al. The study on bacteria instead of H2O2 for in-situ leaching uranium at.512 deposit of yining uranium mine[J]. Uranium Mining and Metallurgy, 1999, 18(4):262-268.
[8] 王清良, 胡鄂明, 余润兰, 等. 细菌低温驯化及其浸出砂岩型铀矿实验研究[J]. 矿冶工程, 2011, 31(6):6-8. WANG Qingliang, HU Eming, YU Runlan, et al. Low-temperature bacteria domestication and leaching of sandstone-type refractory uranium ore[J]. Mining and Metallurgical Engineering, 2011, 31(6):6-8.
[9] 朱宏飞, 李辉, 刘东奇. 三种浸矿细菌协同作用的回顾及展望[J]. 微生物学通报, 2016, 43(12):2730-2737. ZHU Hongfei, LI Hui, LIU Dongqi. A review of synergy development and prospect of three leaching bacteria[J]. Microbiology China, 2016, 43(12):2730-2737.
[10] 陈川, 孙占学, 李江. 浸铀菌群挂膜连续培养工艺研究[J]. 有色金属(矿山部分), 2014, 66(3):6-8. CHEN Chuan, SUN Zhanxue, LI Jiang. Bio-film continuous culture technology of uranium-leaching bacteria[J]. Nonferrous Metals(Mine Section), 2014, 66(3):6-8.
[11] CORAHUASANTO R, ECA A, ABANTO M, et al. Physiological and comparative genomic analysis of Acidithiobacillus ferrivorans PQ33 provides psychrotolerant fitness evidence for oxidation at low temperature[J]. Research in Microbiology, 2017, 168(5):482-492.
[12] LILJEQVIST M, VALDES J, HOLMES D S, et al. Draft genome of the psychrotolerant acidophile Acidithiobacillus ferrivorans SS3[J]. Journal of Bacteriology, 2011, 193(16):4304-4305.
[13] 邱冠周, 柳建设, 王淀佐, 等. 氧化亚铁硫杆菌生长过程铁的行为[J]. 中南工业大学学报, 1998, 29(3):226-228. QIU Guanzhou, LIU Jianshe, WANG Dianzuo, et al. Iron behavior in growth of Thiobacillus ferrooxidans.[J]. Journal of Central South University, 1998, 29(3):226-228.
[14] IUPAC manual of symbols and terminology[J]. Pure Appl. Chem., 1972, 31:578-638.
[15] 近藤精一, 石川达雄, 安部郁夫. 吸附科学[M]. 李国希, 译. 北京:化学工业出版社, 2006. KONDOU S, ISHIKAWA T, ABE I. Adsorption science[M]. LI G X, trans. Beijing:Chemical Industry Press, 2006.
[16] 辛勤, 罗孟飞.现代催化研究方法[M]. 北京:科学出版社. 2009:214-244. XIN Qin, LUO Mengfei. Modern catalytic research methods[M]. Beijing:Science Press, 2009:214-244.
[17] 叶茂友, 严苹方, 孙水裕, 等. 氧化亚铁硫杆菌生物浸出铅锌硫化矿尾矿及浸出过程中重金属形态分析研究[J]. 环境科学学报, 2016, 36(11):4102-4111. YE Maoyou, YAN pingfang, SUN Shuiyu, et al. Study on bioleaching of heavy metals in lead-zinc mine tailings by Acidithiobacillus ferrooxidans and the transformation in the speciation of heavy metals during the bioleaching[J]. Acta Scientiae Circumstantiae, 2016, 36(11):4102-4111.
[18] 许晓芳, 林海, 董颖博, 等. 阳离子对嗜酸氧化亚铁硫杆菌氧化活性的影响[J]. 稀有金属, 2016, 40(5):478-484. XU Xiaofang, LIN Hai, DONG Yingbo, et al. Oxidation activity of Acidthiobacillus Ferrooxidans with cation additives[J]. Chinese Journal of Rare Metals, 2016, 40(5):478-484.
[19] 张成桂, 夏金兰, 邱冠周. 嗜酸氧化亚铁硫杆菌亚铁氧化系统研究进展[J]. 中国有色金属学报, 2006, 16(7):1239-1249. ZHANG Chenggui, XIA Jinlan, QIU Guanzhou. Progress in research on Fe2+ oxidation system of Acidithiobacillus ferrooxidans[J]. Transactions of Nonferrous Metals Society of China, 2006, 16(7):1239-1249.
[20] VLAMAKIS H, CHAI Y, BEAUREGARD P, et al. Sticking together:building a biofilm the Bacillus subtilis way[J]. Nature Reviews Microbiology, 2013, 11(3):157-168.
[21] BREITENBUCHER K, SIEGL M, KNUPFER A, et al. Open-pore sintered glass as a high-efficiency support medium in bioreactors:new results and long-term experiences achieved in high-rate anaerobic digestion[J]. Water Science & Technology, 1990, 22:25-32.
[22] 丁文川, 曾晓岚, 王永芳, 等.生物炭载体的表面特征和挂膜性能研究[J]. 中国环境科学, 2011, 31(9):1451-1455. DING Wenchuan, ZENG Xiaolan, WANG Yonfang, et al. Characteristics and performances of biofilm carrier prepared from agro-based biochar.[J]. China Environmental Science, 2011, 31(9):1451-1455.
[23] CHEN C Y, KAO C M, CHEN S C, et al. Application of immobilized cells to the treatment of cyanide wastewater[J]. Water Science & Technology:A Journal of the International Association on Water Pollution Research, 2007, 56(7):99.
[24] ELBEHTI A, BRASSEUR G, LEMESLEMEUNIER D. First evidence for existence of an uphill electron transfer through the bc1 and NADH-Q oxidoreductase complexes of the acidophilic obligate chemolithotrophic ferrous ion-oxidizing bacterium Thiobacillus ferrooxidans.[J]. Journal of Bacteriology, 2000, 182(12):3602-3606.
[25] 韩洁, 马喜平, 罗螣.铁离子稳定剂的实验室评价[J]. 化学工程与装备, 2010(9):18-20. HAN Jie, MA Xiping, LUO Teng. Laboratory evaluation of iron ion stabilizer[J]. Chemical Engineering & Equipment, 2010(9):18-20. |