[1] 任晓光, 李子燕, 王学谦, 等. 微氧条件下改性活性炭对羰基硫的吸附性能[J]. 化工进展, 2011, 30(2):425-437. REN Xiaoguang, LI Ziyan, WANG Xueqian, et al. Treatment of COS by modified activated carbon under low-oxygen content conditions[J]. Chemical Industry and Engineering Progress, 2011, 30(2):425-437.
[2] SHEN Lijuan, WANG Gaojie, ZHENG Xiaoxiao, et al. Tuning the growth of Cu-MOFs for efficient catalytic hydrolysis of carbonyl sulfide[J]. Chinese Journal of Catalysis, 2017, 38(8):1373-1381.
[3] 王芳芳, 伍星亮, 赵海, 等. 干法脱除煤气中有机硫的研究现状与进展[J]. 煤化工, 2007, 35(3):28-32. WANG Fangfang, WU Xingliang, ZHAO Hai, et al. Research and development of dry process desulfurization of organic sulfur in coal gas[J]. Coal Chemical Industry, 2007, 35(3):28-32.
[4] 马慧. 吸附法脱除低浓度羰基硫的研究[D]. 大连:大连理工大学, 2011. MA Hui. Removal of low concentration COS from N2 by adsorption[D]. Dalian:Dalian University of Technology, 2011.
[5] XU Wenya. Preparation and catalytic properties of new catalysts for hydrode sulfurization of carbonyl sulfide[D]. Dalian:Dalian University of Technology, 2012.
[6] RYZHIKOV A, HULEA V, TICHIT D, et al. Methyl mercaptan and carbonyl sulfide traces removal through adsorption and catalysis on zeolites and layered double hydroxides[J]. Applied Catalysis General, 2011, 397(1/2):218-224.
[7] 杨晨, 赖君玲, 罗根祥. 羰基硫水解催化剂研究进展[J]. 当代化工, 2015(10):2352-2354. YANG Chen, LAI Junling, LUO Genxiang. Research progress of carbonyl sulfide hydrolysis catalysts[J]. Contemporary Chemical Industry, 2015(10):2352-2354.
[8] LIANG Litong, SHANGGUAN Ju, LI Chunhu. Research progress of carbonyl sulfide hydrolysis technology[J]. Natural Gas Chemical Industry, 2005, 30(1):54-57.
[9] 王红妍, 易红宏, 唐晓龙, 等. 羰基硫脱除技术研究现状及进展[J]. 化学工业与工程, 2010, 27(1):67-72. WANG Hongyan, YI Honghong, TANG Xiaolong, et al. Development of carbonyl sulfide removal[J]. Chemical Industry and Engineering, 2010, 27(1):67-72.
[10] HUANG Hongmei, YOUNG Nicola, WILLIAMS B P, et al. High temperature COS hydrolysis catalysed by γ-Al2O3[J]. Catalysis Letters, 2006, 110(3/4):243-246.
[11] 江莉龙, 曹彦宁, 魏可镁, 等. 一种载体、基于该载体的羰基硫水解催化剂及其制备方法:CN104549542A[P]. 2015-04-29. JIANG Lilong, CAO Yanning, WEI Kemei, et al. A kind of carrier, carbonyl sulfide hydrolysis catalyst and its preparation method based on this carrier:CN104549542A[P]. 2015-04-29.
[12] 佘春, 上官炬, 梁丽彤, 等. TiO2和V2O5改性γ-Al2O3催化剂催化有机硫化物水解的性能[J]. 石油化工, 2009, 38(4):384-388. SHE Chun, SHANGGUAN Ju, LIANG Litong, et al. Hydrolysis of organic sulfide on aluminum catalysts with TiO2 and V2O5 modification[J]. Petrochemical Technology, 2009, 38(4):384-388.
[13] 崔敏. 重油裂解活性氧化铝的制备及催化性能研究[D]. 徐州:中国矿业大学, 2014. CUI Min. Study on preparation and catalytic property of activet alumina for heavy oil cracking[D]. Xuzhou:Chinese University of Mining and Technology, 2014.
[14] 王红妍, 易红宏, 唐晓龙, 等. 类水滑石衍生复合氧化物催化水解羰基硫的研究[J]. 环境工程学报, 2012, 6(2):545-549. WANG Hongyan, YI Honghong, TANG Xiaolong, et al. Study of hydrolysis carbonyl sulfide over mixed oxides from hydrotalcite-like compounds[J]. Chinese Journal of Environmental Engineering, 2012, 6(2):545-549.
[15] 王广建, 田爱秀, 陈晓婷, 等. COS水解催化剂及其脱硫机理研究进展[J]. 炼油技术与工程, 2017, 47(9):37-40. WANG Guangjian, TIAN Aixiu, CHEN Xiaoting, et al. Study on COS hydrolysis catalyst and its desulfurization mechanisms[J]. Petroleum Refinery Engineering, 2017, 47(9):37-40.
[16] 梁丽彤, 上官炬, 樊惠玲, 等. 高浓度COS水解催化剂抗硫中毒性能的孔隙效应[J]. 煤炭学报, 2012, 37(12):2102-2106. LIANG Litong, SHANGGUAN Ju, FAN Huiling, et al. Effects of pore structure on anti-sulfur poisoning of the catalyst for high concentration carbonyl sulfide hydrolysis[J]. Journal of China Coal Society, 2012, 37(12):2102-2106.
[17] SHANGGUAN Ju, ZHAO Yousheng, FAN Huiling, et al. Desulfurization behavior of zinc oxide based sorbent modified by the combination of γ-Al2O3 and K2CO3[J]. Fuel, 2013, 108(11):80-84.
[18] LI Kai, SONG Xin, NING Ping, et al. Energy utilization of yellow phosphorus tail gas:simultaneous catalytic hydrolysis of carbonyl sulfide and carbon disulfide at low temperature[J]. Energy Technology, 2015, 3(2):136-144.
[19] 甄开吉, 王国甲, 毕颖丽, 等. 催化作用基础[M]. 北京:科学出版社, 2005. ZHEN Kaiji, WANG Guojia, BI Yingli, et al. Foundation of catalysis[M]. Beijing:Science Press, 2005.
[20] 丁延彬. 二氧化钛基催化剂在硫磺回收装置的工业应用[J]. 石油石化节能, 2014(1):26-28. DING Yanbin. Industrial application of titanium dioxide based catalyzer in sulfur recovery unit[J]. Petroleum and Petrochemical Energy Saving, 2014(1):26-28.
[21] 刘松翠, 吕康乐, 邓克俭, 等. 三种不同晶型二氧化钛的制备及光催化性能研究[J]. 影像科学与光化学, 2008, 26(2):138-147. LIU Songcui, LÜ Kangle, DENG Kejian, et al. Preparation of three types of titanium dioxides with different crystallite and the photo reactivity[J]. Imaging Science and Photo Chemistry, 2008, 26(2):138-147.
[22] 张兴普. 石墨烯-纳米晶镍基复合材料的制备及性能研究[D]. 长春:吉林大学, 2015. ZHANG Xingpu. Fabrication and properties of graphene reinforced NC Ni matrix composites[D]. Changchun:Jilin University, 2015.
[23] 段学臣, 高桂兰, 吴湘伟, 等. 纳米二氧化钛粉末的研制[J]. 稀有金属与硬质合金, 2002, 30(4):17-30. DUAN Xuechen, GAO Guilan, WU Xiangwei, et al. Preparation of nanometer titanium dioxide powder[J]. Rare Metals and Cemented Carbides, 2002, 30(4):17-30.
[24] 黄涛, 张国亮, 张辉, 等. 高性能纳米二氧化钛制备技术研究进展[J]. 化工进展, 2010, 29(3):498-504. HUANG Tao, ZHANG Guoliang, ZHANG Hui, et al. Progress in preparation of TiO2 nanoparticles with high performance[J]. Chemical Industry and Engineering Progress, 2010, 29(3):498-504.
[25] ZHAO C W. Preparation and property of pseudoboehmite by polyaluminum chloride[J]. Chinese Journal of Inorganic Chemistry, 2010, 26(3):521-524.
[26] 张立忠, 柴永明, 张潮, 等. 焙烧温度对氧化铝载体物化性能的影响[J]. 当代化工, 2015(10):2317-2320. ZHANG Lizhong, CHAI Yongming, ZHANG Chao, et al. Effect of calcination temperature on physical-chemical properties of alumina carrier[J]. Contemporary Chemical Industry, 2015(10):2317-2320.
[27] 张春光, 邵磊, 沈志刚, 等. 中和水解法制备纳米TiO2的研究[J]. 化工进展, 2003, 22(1):53-55. ZHANG Chunguang, SHAO Lei, SHEN Zhigang, et al. Study on the preparation of nano-titania by the method of neutralization hydrolysis[J]. Chemical Industry and Engineering Progress, 2003, 22(1):53-55.
[28] 高桂兰, 段学臣. 纳米金红石型二氧化钛粉末的制备及表征[J]. 硅酸盐通报, 2004, 23(1):88-90. GAO Guilan, DUAN Xuechen. Preparation of nanometer rutile TiO2 powder[J]. Silicate Bulletin, 2004, 23(1):88-90.
[29] 李园园, 贾志杰. 纳米金红石型TiO2的制备研究[J]. 化工进展, 2005, 24(10):1155-1157. LI Yuanyuan, JIA Zhijie. Preparation and characterization of nanocrystalline rutileTiO2[J]. Chemical Industry and Engineering Progress, 2005, 24(10):1155-1157.
[30] 张培培. 氧化锌复合纳米纤维的制备与光催化性能研究[D]. 杭州:浙江理工大学, 2010. ZHANG Peipei. Preparation and photocatalytic properties of ZnO nanofibers and its composite nanolibers[D]. Hangzhou:Zhejiang University of Science and Technology, 2010.
[31] 杜作娟, 古映莹. 水热法合成锐钛矿型纳米二氧化钛[J]. 精细化工中间体, 2002, 32(5):24-25. DU Zuojuan, GU Yingying. Preparation of nanoparticles anatase titanium dioxide by hydro thermal synthesis[J]. Fine Chemical Intermediates, 2002, 32(5):24-25.
[32] 杨峰, 宁正福, 胡昌蓬, 等. 页岩储层微观孔隙结构特征[J]. 石油学报, 2013, 34(2):301-311. YANG Feng, NING Zhengfu, HU Changpeng, et al. Characterization of microscopic pore structures in shale reservoirs[J]. Acta Petrolei Sinica, 2013, 34(2):301-311.
[33] Sonwane C G, Bhatia S K. Characterization of pore size distributions of mesoporous materials from adsorption isotherms[J]. The Journal of Physical Chemistry B, 2000, 104(39):9099-9110.
[34] 陈峰. 木质素-RF有机气凝胶的制备及其性能研究[D]. 哈尔滨:东北林业大学, 2011. CHEN Feng. Preparation and properties of lignin-RF organic aerogels[D]. Haerbin:Northeast Forestry University, 2011.
[35] 袁海宽, 马晓华, 许振良. 氮气吸附等温线分析PFSA/SiO2复合催化剂孔结构[J]. 中国科学(化学), 2011(6):1094. YUAN Haikuan, MA Xiaohua, XU Zhenliang. Nitrogen adsorption isotherm analysis of pore structure of PFSA/SiO2 composite catalyst[J]. Chinese Science(Chemistry), 2011(6):1094.
[36] TIAN Huan, WU Jiang, ZHANG Wenbo, et al. High performance of Fe nanoparticles/carbon aerogel sorbents for H2S removal[J]. Chemical Engineering Journal, 2017, 313:1051-1060.
[37] 马腾坤, 房晶瑞, 孟刘邦, 等. TiO2载体对Mn-Ce/TiO2催化剂脱硝活性的影响[J]. 化工环保, 2017, 37(1):94-100. MA Tengkun, FANG Jingrui, MENG Liubang, et al. Effect of TiO2 support on denitration activity of Mn-Ce/TiO2 catalyst[J]. Environmental Protection of Chemical Industry, 2017, 37(1):94-100.
[38] TOSTÓN S, CAMARILLO R, MARTINEZ F, et al. Supercritical synthesis of platinum-modified titanium dioxide for solar fuel production from carbon dioxide[J]. Chinese Journal of Catalysis, 2017, 38(4):636-650.
[39] 周明飞. TiO2薄膜光催化及其亲水性能研究[D]. 合肥:安徽大学, 2008. ZHOU Mingfei. Study on photocatalytic and hydrophilicproperties of TiO2 film[D]. Hefei:Anhui University, 2008.
[40] 董正平, 黎春洋, 张伟, 等. Pd负载不同尺寸孔道直径纳米硅球催化剂的制备及其催化加氢脱氯研究[C]//中国化学会第29届学术年会, 北京, 2014. DONG Zhengping, LI Chunyang, ZHANG Wei, et al. Effect of pore diameter of mesoporous silica sieve supported Pd catalysts on hydrode chlorination performance[C]//Academic Annual Meeting of China Chemical Society, Beijing, 2014.
[41] 周广林, 付元胜. 载体孔结构对常温COS水解催化剂性能的影响[J]. 工业催化, 2000, 8(1):35-37. ZHOU Guanglin, FU Yuansheng. Influence of pore structure of carrier on property of ambient temperature COS hydrolysis catalyst[J]. Industrial Catalysis, 2000, 8(1):35-37.
[42] 上官炬, 李春虎, 郭小汾, 等. 羰基硫水解催化剂CO2-TPD研究[C]//全国催化学术会议, 张家界, 2000. SHANGGUAN Ju, LI Chunhu, GUO Xiaofen, et al. Study on CO2-TPD of of carbonyl sulfide hydrolysis catalyst[C]//National Conference on Catalysis, Zhangjiajie, 2000.
[43] 曾力丁, 朱冬生, 王春华, 等. 氢气中氧气的钯催化去除[J]. 华南理工大学学报(自然科学版), 2008, 36(11):22-26. ZENG Liding, ZHU Dongsheng, Wang Chunhua, et al. Elimination of oxygen from hydrogen with catalysis of palladium[J]. Journal of South China University of Technology (Natural Science Edition), 2008, 36(11):22-26.
[44] WANG J, PAN Z, ZHANG Z, et al. Sonocatalytic degradation of methyl parathion in the presence of nanometer and ordinary anatase titanium dioxide catalysts and comparison of their sonocatalytic abilities[J]. Ultrasonics Sonochemistry, 2006, 13(6):493-500.
[45] MOHAGHEGHI M, BAKERI G, SAEEDIZAD M. Study of the effects of external and internal diffusion on the propane dehydrogenation reaction over Pt-Sn/Al2O3 catalyst[J]. Chemical Engineering & Technology, 2010, 30(12):1721-1725.
[46] 王艳华, 沙雪清, 刘桂宇, 等. CH4-CO2反应动力学的研究Ⅰ:内外扩散影响的消除[J]. 哈尔滨师范大学自然科学学报, 2001, 17(5):80-85. WANG Yanhua, SHA Xueqing, LIU Guiyu, et al. The kinetics studies on CH4-CO2 performing elimination of the effects of internal and external diffusion over Ni-based catalyst[J]. Natural Sciences Journal of Harbin Normal University, 2001, 17(5):80-85.
[47] STRIEDER W. Chemoreceptor diffusion and reaction:first-order kinetics[J]. Chemical Engineering Science, 2000, 55(14):2579-2584.
[48] ZHANG Jian, GUO Weihe, GUO Dongjin. An implicit relation between temperature and reaction rate in the slfm[J]. Theoretical and Applied Mechanics Letters, 2011, 1(1):47-49.
[49] 朱建锋, 杨波, 冉云飞, 等. 镓对Al-Mg-Sn-Ga合金可溶解性能的影响[J]. 陕西科技大学学报, 2016, 34(6):47-52. ZHU Jianfeng, YANG Bo, RAN Yunfei, et al. Effect of Ga on the dissolving properties of Al-Mg-Sn-Ga alloy[J]. Journal of Shaanxi University of Science and Technology, 2016, 34(6):47-52.
[50] 韩志芳. 煤自燃过程中活化能计算实验研究[J]. 中州煤炭, 2016(2):115-118. HAN Zhifang. Experimental study on activation energy computation in process of coal spontaneous combustion[J]. Zhongzhou Coal, 2016(2):115-118.
[51] 邱永福. 催化剂Au/Ce0.6Zr0.35Y0.05O2对一氧化碳氧化的催化活性研究[J]. 东莞理工学院学报, 2013, 20(3):69-72. QIU Yongfu. A study of the catalytic mechanism of Au/Ce0.6Zr0.35Y0.05O2 for carbon monoxide oxidation[J]. Journal of Dongguan University of Technology, 2013, 20(3):69-72.
[52] RHODES C, RIDDELB S A, WESTA J, et al. Low-temperature hydrolysis of carbonyl sulfide and carbon disulfide:a review[J]. Catalysis Today, 2000, 59(3):443-464. |