[1] STANKIEWICZ A,MOULIJN J A. Process intensification:transforming chemical engineering[J]. Chemical Engineering Progress,2000,96(1):22-34.
[2] VAN GERVEN T,STANKIEWICZ A. Structure,energy,synergy,time-the fundamentals of process intensification[J]. Industrial & Engineering Chemistry Research,2009,48(5):2465-2474.
[3] 费维扬. 过程强化的若干新进展[J]. 世界科技研究与发展,2004,26(5):1-4. FEI Weiyang. The progress of process intensification[J]. World Sci-Tech R&D,2004,26(5):1-4.
[4] 孙宏伟,陈建峰. 我国化工过程强化技术理论与应用研究进展[J]. 化工进展,2011,30(1):1-15. SUN Hongwei,CHEN Jianfeng. Advances in fundamental study and application of chemical process intensification technology in China[J]. Chemical Industry and Engineering Progress,2011,30(1):1-15.
[5] 史子瑾. 聚合反应工程基础[M]. 北京:化学工业出版社,1991. SHI Zijin. Fundamentals of polymer reaction engineering[M]. Beijing:Chemical Industry Press,1991.
[6] 陈光文,袁权. 微化工技术[J]. 化工学报,2003,54(4):427-439. CHEN Guangwen,YUAN Quan. Micro-chemical technology[J]. Journal of Chemical Industry and Engineering (China),2003,54(4):427-439.
[7] 宋顺刚,顾雪萍,王嘉骏,等. 微反应器在聚合反应中的应用[J]. 化工进展,2012,31(2):259-267. SONG Shungang,GU Xueping,WANG Jiajun,et al. Application of microreactors in polymerization[J]. Chemical Industry and Engineering Progress,2012,31(2):259-267.
[8] BALLY F,SERRA C A,HESSEL V,et al. Micromixer-assisted polymerization processes[J]. Chemical Engineering Science,2011,66(7):1449-1462.
[9] IWASAKI T,YOSHIDA J. Free radical polymerization in microreactors. significant improvement in molecular weight distribution control[J]. Macromolecules,2005,38(4):1159-1163.
[10] SERRA C,SARY N,SCHLATTER G,et al. Numerical simulation of polymerization in interdigital multilamination micromixers[J]. Lab on a Chip,2005,5(9):966-973.
[11] SERRA C,SCHLATTER G,SARY N,et al. Free radical polymerization in multilaminated microreactors:2D and 3D multiphysics CFD modeling[J]. Microfluidics and Nanofluidics,2007,3(4):451-461.
[12] WU T,MEI Y,XU C,et al. Block copolymer PEO-b-PHPMA synthesis using controlled radical polymerization on a chip[J]. Macromolecular Rapid Communications,2005,26(13):1037-1042.
[13] IWASAKI T,YOSHIDA J. CF3SO3H initiated cationic polymerization of diisopropenylbenzenes in macrobatch and microflow systems[J]. Macromolecular Rapid Communications,2007,28(11):1219-1224.
[14] LIU S,CHANG C H. High rate convergent synthesis and deposition of polyamide dendrimers using a continuous-flow microreactor[J]. Chemical Engineering & Technology,2007,30(3):334-340.
[15] HOANG P H,NGUYEN C T,PERUMAL J,et al. Droplet synthesis of well-defined block copolymers using solvent-resistant microfluidic device[J]. Lab on a Chip,2011,11(2):329-335.
[16] XU C,BARNES S E,WU T,et al. Solution and surface composition gradients via microfluidic confinement:fabrication of a statistical-copolymer-brush composition gradient[J]. Advanced Materials,2006,18(11):1427-1430.
[17] ROSENFELD C,SERRA C,BROCHON C,et al. Use of micromixers to control the molecular weight distribution in continuous two-stage nitroxide-mediated copolymerizations[J]. Chemical Engineering Journal,2008,135(s1):S242-S246.
[18] NAGAKI A,TOMIDA Y,YOSHIDA J I. Microflow-system-controlled anionic polymerization of styrenes[J]. Macromolecules,2008,41(17):6322-6330.
[19] NAGAKI A,KAWAMURA K,SUGA S,et al. Cation pool-initiated controlled/living polymerization using microsystems[J]. Journal of the American Chemical Society,2004,126(45):14702-14703.
[20] XIE P,WANG K,WANG P,et al. Synthesizing bromobutyl rubber by a microreactor system[J]. AIChE Journal,2017,63(3):1002-1009.
[21] NI X,ZHANG Y,MUSTAFA I. An investigation of droplet size and size distribution in methylmethacrylate suspensions in a batch oscillatory-baffled reactor[J]. Chemical Engineering Science,1998,53(16):2903-2919.
[22] NI X,ZHANG Y,MUSTAFA I. Correlation of polymer particle size with droplet size in suspension polymerisation of methylmethacrylate in a batch oscillatory-baffled reactor[J]. Chemical Engineering Science,1999,54(6):841-850.
[23] NI X,JOHNSTONE J C,SYMES K C,et al. Suspension polymerization of acrylamide in an oscillatory baffled reactor:from drops to particles[J]. AIChE Journal,2001,47(8):1746-1757.
[24] LOBRY E,LASUYE T,GOURDON C,et al. Liquid-liquid dispersion in a continuous oscillatory baffled reactor-application to suspension polymerization[J]. Chemical Engineering Journal,2015,259:505-518.
[25] 陈国南,李广赞,王嘉骏,等. 泰勒反应器中流体流动及停留时间分布研究[J]. 化学工程,2005,33(6):22-25. CHEN Guonan,LI Guangzan,WANG Jiajun,et al. Study on fluid flow and residence time distribution in Taylor vortex flow reactor[J]. Chemical Engineering(China),2005,33(6):22-25.
[26] 董杰. 泰勒反应器中细乳液聚合的研究[D]. 杭州:浙江大学,2010. DONG Jie. Miniemulsion polymerization in Taylor reactor[D]. Hangzhou:Zhejiang University,2010.
[27] PAUER W,MORITZ H. Continuous reactor concepts with superimposed secondary flow-polymerization process intensification[J]. Macromolecular Symposia,2006,243(1):299-308.
[28] RÜTTGERS D,NEGOITA I,PAUER W,et al. Process intensification of emulsion polymerization in the continuous Taylor reactor[J]. Macromolecular Symposia,2007,259(1):26-31.
[29] GONZALEZ G,COLMENAR E,DIACONU G,et al. Production of widely different dispersed polymers in a continuous Taylor-Couette reactor[J]. Macromolecular Reaction Engineering,2009,3(5/6):233-240.
[30] AOUNE A,RAMSHAW C. Process intensication:heat and mass transfer characteristics of liquid films on rotating discs[J]. International Journal of Heat and Mass Transfer,1999,42(14):2543-2556.
[31] STANKIEWICZ A,MOULIJN J A. Re-engineering the chemical processing plant:process intensification[M]. Florida:CRC Press,2003.
[32] JACOBSEN N C,HINRICHSEN O. Micromixing efficiency of a spinning disk reactor[J]. Industrial & Engineering Chemistry Research,2012,51(36):11643-11652.
[33] LADDHA G S,DEGALEESAN T E. Transport phenomena in liquid extraction[M]. New York:McGraw-Hill,1978.
[34] PASK S D,CAI Z,HELMUT M,et al. The spinning disk reactor for polymers and nanoparticles[J]. Macromolecular Reaction Engineering,2013,7(2):98-106.
[35] PASK S D,NUYKEN O,CAI Z. The spinning disk reactor:an example of a process intensification technology for polymers and particles[J]. Polymer Chemistry,2012,3(10):2698-2707.
[36] MOGHBELI M R,MOHAMMADI S,ALAVI S M. Bulk free-radical polymerization of styrene on a spinning disc reactor[J]. Journal of Applied Polymer Science,2009,113(2):709-715.
[37] DOBIE C G,MARIJAVICEVIC,BOODHOO K V K. An evaluation of the effectiveness of continuous thin film processing in a spinning disc reactor for bulk free-radical photo-copolymerisation[J]. Chemical Engineering and Processing:Process Intensification,2013,71:97-106.
[38] VICEVIC M,NOVAKOVIC K,BOODHOO K V K,et al. Kinetics of styrene free radical polymerisation in the spinning disc reactor[J]. Chemical Engineering Journal,2008,135(1):78-82.
[39] LEVESON P,DUNK W,JACHUCK R J. Numerical investigation of kinetics of free-radical polymerization on spinning disk reactor[J]. Journal of Applied Polymer Science,2003,90(3):693-699.
[40] 冯连芳,曹松峰,顾雪萍,等. 高粘搅拌聚合反应装置[J]. 合成橡胶工业,2001,24(5):257-261. FENG Lianfang,CAO Songfeng,GU Xueping,et al. Highly viscous stirred polymerization reactor[J]. China Synthetic Rubber Industry,2001,24(5):257-261.
[41] 成文凯,王嘉骏,顾雪萍,等. 聚合物搅拌脱挥设备及其CFD模拟研究进展[J]. 化工进展,2016,35(5):1283-1288. CHENG Wenkai,WANG Jiajun,GU Xueping,et al. Progress on agitated apparatus for polymer devolatilization and its CFD simulation[J]. Chemical Industry and Engineering Progress,2016,35(5):1283-1288.
[42] ARNAUD D,KUNZ A,FLEURY P A. Devices for carrying out mechanical,chemical and/or thermal processes:US9126158[P]. 2015-09-08.
[43] FLEURY P A,KUNKEL R. Devices for carrying out mechanical,chemical and/or thermal processes:US14/368626[P]. 2012-12-27.
[44] SAFRIT B T,DIENER A E. Kneader technology for the direct devolatilization of temperature sensitive elastomers[C]//Annual Technical Conference(ANTEC). Milwaukee,USA,2008.
[45] ZHAO H,SHAO L,CHEN J F. High-gravity process intensification technology and application[J]. Chemical Engineering Journal,2010,156(3):588-593.
[46] 邹海魁,初广文,向阳,等. 超重力反应强化技术最新进展[J]. 化工学报,2015,66(8):2805-2809. ZOU Haikui,CHU Guangwen,XIANG Yang,et al. New progress of HIGEE reaction technology[J]. CIESC Journal,2015,66(8):2805-2809.
[47] 张雷,高花,邹海魁,等. 丁基橡胶聚合新型超重力反应器工艺[J]. 化工学报,2008,59(1):260-263. ZHANG Lei,GAO Hua,ZOU Haikui,et al. Preparation of butyl rubber by new high-gravity technology[J]. Journal of Chemical Industry and Engineering(China),2008,59(1):260-263.
[48] 陈建峰,高花,吴一弦,等. 一种丁基橡胶的制备方法:200710110412.0[P]. 2008-02-27. CHEN Jianfeng,GAO Hua,WU Yixian,et al. A method to prepare butyl rubber:200710110412.0[P]. 2008-02-27.
[49] HAW J K. Mass transfer of centrifugally enhanced polymer devolatilization by using foam metal bed[D]. Cleveland,Ohio:Case Western Reserve University,1995.
[50] SUNDMACHER K,KIENLE A. Reactive distillation[M]. Weinheim:Wiley-VCH,2002.
[51] SHAH M,ZONDERVAN E,OUDSHOORN M L,et al. A novel process for the synthesis of unsaturated polyester[J]. Chemical Engineering and Processing:Process Intensification,2011,50(8):747-756.
[52] SHAH M,KISS A A,ZONDERVAN E,et al. Pilot-scale experimental validation of unsaturated polyesters synthesis by reactive distillation[J]. Chemical Engineering Journal,2012,213:175-185.
[53] LOMELI-RODRIGUEZ M,RIVERA-TOLEDO M,LOPEZ-SANCHEZ J A. Process intensification of the synthesis of biomass-derived renewable polyesters:reactive distillation and divided wall column polyesterification[J]. Industrial & Engineering Chemistry Research,2017,56(11):3017-3032.
[54] 马里诺·赞索斯. 反应挤出——原理与实践[M]. 瞿金平,李光吉,周南桥,等译. 北京:化学工业出版社,1999. MARINO Xanthos. Reactive extrusion:principles and practice[M]. QU Jingping,LI Guangji,ZHOU Nanqiao,et al. trans. Beijing:Chemical Industry Press,1999.
[55] 王益龙,刘安栋. 反应挤出技术研究进展[J]. 现代塑料加工应用,2004,16(2):35-39. WANG Yilong,LIU Andong. Development in reactive extrusion technology[J]. Modern Plastics Processing and Applications,2004,16(2):35-39.
[56] 张才亮. 聚合物反应挤出相容剂的合成与表征[D]. 杭州:浙江大学,2005. ZHANG Cailiang. The synthesis and characterization of compatibilizator using the reaction extrusion of polymers[D]. Hangzhou:Zhejiang University,2005.
[57] LIU H,YAO Z,CAO K,et al. Characteristic analysis on a reactive extrusion process for the imidization of poly(styrene-co-maleic anhydride) with aniline[J]. Chemical Engineering Science,2010,65(5):1781-1789.
[58] YUAN X,GUAN Y,LI S,et al. Anionic bulk polymerization to synthesize styrene-isoprene diblock and multiblock copolymers by reactive extrusion[J]. Journal of Applied Polymer Science,2014,131(2):1-9.
[59] 季薇芸. "反应型相容示踪剂"方法研究聚合物反应共混中的界面反应和形态演变[D]. 杭州:浙江大学,2016. JI Weiyun. A concept of reactive compatibilizer-tracer for studying the interfacial reaction and evolution of morphology in reactive polymer blending[D]. Hangzhou:Zhejiang University,2016.
[60] 廖传华,周勇军. 超临界流体技术及其过程强化[M]. 北京:中国石化出版社,2007. LIAO Chuanhua,ZHOU Yongjun. Supercritical fluid technology and process intensification[M]. Beijing:China Petrochemical Press,2007.
[61] 张怀平,陈鸣才. 超临界二氧化碳中的聚合反应[J]. 化学进展,2009,21(9):1869-1879. ZHANG Huaiping,CHEN Mingcai. Polymerization in surpercritical carbon dioxide[J]. Progress in Chemistry,2009,21(9):1869-1879.
[62] MA C,CAO L,WANG X,et al. Characterization and adsorption capacity of a novel high-performance polymeric sorbent synthesized in supercritical carbon dioxide[J]. The Journal of Supercritical Fluids,2012,62:232-239.
[63] ALAIMO D,GRIGNARD B,KUPPAN C,et al. A photocleavable stabilizer for the preparation of PHEMA nanogels by dispersion polymerization in supercritical carbon dioxide[J]. Polymer Chemistry,2017,8(3):581-591.
[64] BASSETT S P,BIRKIN N A,JENNINGS J,et al. One-pot synthesis of micron-sized polybetaine particles; innovative use of supercritical carbon dioxide[J]. Polymer Chemistry,2017,8(31):4557-4564.
[65] DOBIE C G,BOODHOO K V K. Surfactant-free emulsion polymerisation of methyl methacrylate and methyl acrylate using intensified processing methods[J]. Chemical Engineering and Processing:Process Intensification,2010,49(9):901-911.
[66] BHANVASE B A,PINJARI D V,GOGATE P R,et al. Process intensification of encapsulation of functionalized CaCO3 nanoparticles using ultrasound assisted emulsion polymerization[J]. Chemical Engineering and Processing:Process Intensification,2011,50(11/12):1160-1168.
[67] MEULDIJK J,VAN DE KRUIJS B H P,VAN VEKEMANS J A J M,et al. A novel production route for nylon-6:aspects of microwave-enhanced catalysis[J]. Macromolecular Symposia,2011,302(1):69-79.
[68] DUBEY S P,ABHYANKAR H A,MARCHANTE V,et al. Microwave energy assisted synthesis of poly lactic acid via continuous reactive extrusion:modelling of reaction kinetics[J]. RSC Advances,2017,7(30):18529-18538. |