化工进展 ›› 2018, Vol. 37 ›› Issue (04): 1323-1334.DOI: 10.16085/j.issn.1000-6613.2017-1597
汤祺1, 白璐2, 董海峰2, 王奎升1, 张香平2
收稿日期:
2017-07-31
出版日期:
2018-04-05
发布日期:
2018-04-05
通讯作者:
张香平,研究员,研究方向为化学工程及绿色化学;王奎升,教授,研究方向为流体机械工作理论。
作者简介:
汤祺(1991-),男,硕士研究生,从事过程工程强化及放大研究。E-mail:tangqi@ipe.ac.cn。
基金资助:
TANG Qi1, BAI Lu2, DONG Haifeng2, WANG Kuisheng1, ZHANG Xiangping2
Received:
2017-07-31
Online:
2018-04-05
Published:
2018-04-05
摘要: 离子液体作为一种新兴的绿色溶剂,由于其较高的热稳定性、宽电化学窗口、极低的饱和蒸气压、良好的可设计性及循环性能,逐渐受到广泛关注,在工业分离、催化反应及电化学等方面具有十分广阔的工业应用前景。而要实现这些技术的工业化,就必须深入认识离子液体体系的流体动力学性质,如气泡行为、混合行为等。本文针对离子液体体系中气-液两相流、液-液两相流以及三相流流动行为,分别从实验研究和数值模拟两个角度对研究现状进行了系统分析和评述,并认为离子液体体系流体动力学研究尚处于逐步深入的阶段,其中离子液体体系三相流流体动力学研究仅有实验成果,液-固两相流研究几近空白,亟需填补。离子液体体系流体动力学研究未来的实验研究中将使用更多先进的检测手段,而数值模拟将结合离子液体的特殊性质,从微观到宏观深度剖析不同体系下的流动行为。
中图分类号:
汤祺, 白璐, 董海峰, 王奎升, 张香平. 离子液体体系流体动力学研究现状及发展趋势[J]. 化工进展, 2018, 37(04): 1323-1334.
TANG Qi, BAI Lu, DONG Haifeng, WANG Kuisheng, ZHANG Xiangping. Research on status and developing trends of hydrodynamics in ionic-liquid system[J]. Chemical Industry and Engineering Progress, 2018, 37(04): 1323-1334.
[1] ZHANG X,ZHANG X,DONG H,et al.Carbon capture with ionic liquids:overview and progress[J].Energy & Environmental Science,2012,5:6668-6681. [2] BLANCHARD L A,HANCU D,BECKMAN E J,et al.Green processing using ionic liquids and CO2[J].Nature,1999,399:28-29. [3] KAZARIAN S G,BRISCOE B J,WELTON T.Combining ionic liquids and supercritical fluids:in situ AIR-IR study of CO2 dissolved in two ionic liquids at high pressures[J].Chemical Communications,2000(20):2047-2048. [4] CROWHURST L,MAWDSLEY P R,PEREZ-ARLANDIS J M,et al.Solvent-solute interactions in ionic liquids[J]. Physical Chemistry Chemical Physics,2003,5:2790-2794. [5] ANDERSON J L,DIXON J K,BRENNECKE J F.Solubility of CO2,CH4,C2H6,C2H4,O2,and N2 in 1-hexyl-3-methylpyridiniumbis(trifluoromethylsulfonyl)imide:comparison to other ionic liquids[J].Accounts of Chemical Research,2007,40:1208-1216. [6] MULDOON M J,AKI S N V K,ANDERSON J L,et al.Improving carbon dioxide solubility in ionic liquids[J].Journal of Physical Chemistry B,2007,111:9001-9009. [7] GURKAN B E,DE LA FUENTE J C,MINDRUP E M,et al. Equimolar CO2 absorption by anion-functionalized ionic liquids[J].Journal of The American Chemical Society,2010,132:2116-2117. [8] GAO H S,GUO C,XING J M,et al.Deep desulfurization of diesel oil with extraction using pyridinium-based ionic liquids[J].Separation Science and Technology,2012,47:325-330. [9] YUNUS N M,MUTALIB M I A,MAN Z,et al.Solubility of CO2 in pyridinium based ionic liquids[J].Chemical Engineering Journal,2012,189-190:94-100. [10] ZENG S,HE H,GAO H,et al.Improving SO2 capture by tuning functional groups on the cation of pyridinium-based ionic liquids[J].RSC Advances,2015,5:2470-2478. [11] ZENG S,WANG J,BAI L,et al.Highly selective capture of CO2 by ether-functionalized pyridinium ionic liquids with low viscosity[J].Energy & Fuels,2015,29:6039-6048. [12] ZENG S,ZHANG X,GAO H,et al.SO2-induced variations in the viscosity of ionic liquids investigated by in situ Fourier transform infrared spectroscopy and simulation calculations[J].Industrial &Engineering Chemistry Research,2015,54:10854-10862. [13] LIU Z,HUANG S,WANG W.A refined force field for molecular simulation of imidazolium-based ionic liquids[J].Journal of Physical Chemistry B,2004,108:12978-12989. [14] LOPES J N C,PADUA A H.Molecular force field for ionic liquids Ⅲ:imidazolium,pyridinium,and phosphonium cations;chloride,bromide,and dicyanamide anions[J].Journal of Physical Chemistry B,2006,110:19586-19592. [15] CHAUMONT A,WIPFF G.Solvation of In (Ⅲ) lanthanide cations in the[BMI] [SCN],[MeBu3N] [SCN],and[BMI]5[ln(NCS)8] ionic liquids:a molecular dynamics study[J].Inorganic Chemistry,2009,48:4277-4289. [16] ZHANG X,LIU X,YAO X,et al.Microscopic structure,interaction,and properties of a guanidinium-based ionic liquid and its mixture with CO2[J]. Industrial& Engineering Chemistry Research,2011,50:8323-8332. [17] HUANG Y,ZHANG X P,ZHANG X,et al.Thermodynamic modeling and assessment of ionic liquid-based CO2 capture processes[J].Industrial & Engineering Chemistry Research,2014,53:11805-11817. [18] HUANG Y,ZHAO Y,ZENG S,et al.Density prediction of mixtures of ionic liquids and molecular solvents using two new generalized models[J].Industrial & Engineering Chemistry Research,2014,53:15270-15277. [19] ZHAO Y S,PASO K,ZHANG X P,et al.Utilizing ionic liquids as additives for oil property modulation[J].RSC Advances,2014,4:6463-6470. [20] ZHAO Y S,ZHAO J H,HUANG Y,et al.Toxicity of ionic liquids:database and prediction via quantitative structure-activity relationship method[J].Journal of Hazardous Materials,2014,278:320-329. [21] HUANG Y,ZHANG X,ZHAO Y,et al.New models for predicting thermophysical properties of ionic liquid mixtures[J].Physical Chemistry Chemical Physics,2015,17:26918-26929. [22] ZHAO Y,HUANG Y,ZHANG X,et al.A quantitative prediction of the viscosity of ionic liquids using s sigma-profile molecular descriptors[J].Physical Chemistry Chemical Physics,2015,17:3761-3767. [23] ZHAO Y,HUANG Y,ZHANG X,et al.Prediction of heat capacity of ionic liquids based on COSMO-RS sσ-profile[J].Computer Aided Chemical Engineering.2015,37:251-256. [24] ZHAO Y,ZENG S,HUANG Y,et al.Estimation of heat capacity of ionic liquids using sσ-profile molecular descriptors[J]. Industrial & Engineering Chemistry Research,2015,54:12987-12992. [25] DONG H,WANG X,LIU L,et al.The rise and deformation of a single bubble in ionic liquids[J].Chemical Engineering Science,2010,65:3240-3248. [26] CALDERBANK P,MOO-YOUNG M.The continuous phase heat and mass-transfer properties of dispersions[J].Chemical Engineering Science,1961,16:39-54. [27] LAAKKONEN M,HONKANEN M,SAARENRINNE P,et al.Local bubble size distributions,gas-liquid interfacial areas and gas holdups in a stirred vessel with particle image velocimetry[J].Chemical Engineering Journal,2005,109:37-47. [28] LAAKKONEN M,MOILANEN P,AITTAMAA J.Local bubble size distributions in agitated vessels[J].Chemical Engineering Journal,2005,106:133-143. [29] KHOPKAR A R,KASAT G R,PANDIT A B,et al.CFD simulation of mixing in tall gas-liquid stirred vessel:role of local flow patterns[J].Chemical Engineering Science,2006,61:2921-2929. [30] LAAKKONEN M,MOILANEN P,ALOPAEUS V,et al.Modelling local bubble size distributions in agitated vessels[J].Chemical Engineering Science,2007,62:721-740. [31] MURTHY B N,GHADGE R S,JOSHI J B.CFD simulations of gas-liquid-solid stirred reactor:prediction of critical impeller speed for solid suspension[J].Chemical Engineering Science,2007,62:7184-7195. [32] KHOPKAR A R,TANGUY P A.CFD simulation of gas-liquid flows in stirred vessel equipped with dual rushton turbines:influence of parallel,merging and diverging flow configurations[J].Chemical Engineering Science,2008,63:3810-3820. [33] JAHODA M,TOMASKOVA L,MOWTEK M.CFD prediction of liquid homogenisation in a gas-liquid stirred tank[J].Chemical Engineering Research and Design,2009,87:460-467. [34] ZWIETERING T N.Suspending of solid particles in liquid by agitators[J].Chemical Engineering Science,1958,8:244-253. [35] BOHNET M,NIESMAK G.Distribution of solids in stirred suspensions[J].Chemie Ingenieur Technik,1979,51:314-315. [36] TAKAHASHI K,FUJITA H,YOKOTA T.Effect of size of spherical particle on complete suspension speed in agitated vessels of different scale[J].Journal of Chemical Engineering of Japan,1993,26:98-100. [37] IBRAHIM S,NIENOW A.Particle suspension in the turbulent regime:the effect of impeller type and impeller/vessel configuration[J]. Chemical Engineering Research & Design,1996,74:679-688. [38] DOHI N,TAKAHASHI T,MINEKAWA K,et al.Power consumption and solid suspension performance of large-scale impellers in gas-liquid-solid three-phase stirred tank reactors[J]. Chemical Engineering Journal,2004,97:103-114. [39] OCHIENG A,LEWIS A E.Nickel solids concentration distribution in a stirred tank[J].Minerals Engineering,2006,19:180-189. [40] OCHIENG A,LEWIS A E.CFD simulation of solids off-bottom suspension and cloud height[J].Hydrometallurgy,2006,82:1-12. [41] BEETSTRA R,VAN DER HOEF M A,KUIPERS J A M.Drag force of intermediate Reynolds number flow past mono-and bidisperse arrays of spheres[J].AIChE Journal,2007,53:489-501. [42] TAMBURINI A,CIPOLLINA A,MICALE G,et al.Dense solid-liquid off-Bottom suspension dynamics:simulation and experiment[J].Chemical Engineering Research and Design,2009,87:587-597. [43] TAMBURINI A,CIPOLLINA A,MICALE G,et al.CFD simulations of dense solid-liquid suspensions in baffled stirred tanks:prediction of suspension curves[J].Chemical Engineering Journal,2011,178:324-341. [44] CHAPMAN C,NIENOW A,COOKE M,MIDDLETON J. Particle-gas-liquid mixing in stirred vessels.PART Ⅱ:gas-liquid mixing[J]. Chemical Engineering Research and Design,1983,61:82-95. [45] CHAPMAN C M,NIENOW A,COOKE M,et al.Particle-gas-liquid mixing in stirred vessels.Ⅰ:Particle-liquid mixing[J].Chemical Engineering Research and Design,1983,61:71-81. [46] WARMOESKERKEN M,VAN HOUWELINGEN M,FRIJLINK J,et al.Role of cavity formation in stirred gas-liquid-solid reactors[J]. Chemical Engineering Research and Design,1984,62:197-200. [47] WONG C,WANG J,HUANG S.Investigations of fluid dynamics in mechanically stirred aerated slurry reactors[J].The Canadian Journal of Chemical Engineering,1987,65:412-419. [48] REWATKAR V B,JOSHI J B.Critical impeller speed for solid suspension in mechanically agitated three-phase reactors. 2. Mathematical model[J]. Industrial & Engineering Chemistry Research,1991,30:1784-1791. [49] REWATKAR V B,RAO K R,JOSHI J B.Critical impeller speed for solid suspension in mechanically agitated three-phase reactors. 1. Experimental part[J].Industrial & Engineering Chemistry Research,1991,30:1770-1784. [50] DYLAG M,TALAGA J.Hydrodynamics of mechanical mixing in a three-phase liquid-gas-solid system,Inzynieria Chemiczna i Procesowa 12,No.1(1991),Poland[J].International Chemical Engineering,1994,34:539-551. [51] TOMIYAMA A. Struggle with computational bubble dynamics[J]. Multiphase Science and Technology,1998,10:369-405. [52] KELBALIYEV G,CEYLAN K.Development of new empirical equations for estimation of drag coefficient,shape deformation,and rising velocity of gas bubbles or liquid drops[J].Chemical Engineering Communications,2007,194:1623-1637. [53] RODRIGUE D.Drag coefficient-Reynolds number transition for gas bubbles rising steadily in viscous fluids[J].Canadian Journal of Chemical Engineering,2001,79(1):119-123. [54] TURTON R,LEVENSPIEL O.A short note on the drag correlation for spheres[J].Powder Technology,1986,47:83-86. [55] MEI R,KLAUSNER J.Unsteady force on a spherical bubble at finite Reynolds number with small fluctuations in the free-stream velocity[J].Physics of Fluids A:Fluid Dynamics,1992,4:63. [56] TOMIYAMA A.Drag,lift and virtual mass forces acting on a single bubble[C]//Proceedings of the 3rd International Symposium on Two-Phase Flow Modelling and Experimentation,Pisa,F September,2004. [57] ZHANG X,BAO D,HUANG Y,et al.Gas-liquid mass-transfer properties in CO2 absorption system with ionic liquids[J].AIChE Journal,2014,60:2929-2939. [58] OKUNO M,HAMAGUCHI H-O,HAYASHI S.Magnetic manipulation of materials in a magnetic ionic liquid[J].Applied Physics Letters,2006,89:132506. [59] DA SILVA N M P,LETOURNEAU J-J,ESPITALIER F,et al.Transparent and inexpensive microfluidic device for two-phase flow systems with high-pressure performance[J]. Chemical Engineering & Technology,2014,37:1929-1937. [60] 谭璟,赵菁菁,徐建鸿,等.微通道中气体离子液体两相流动与分散性能[J].化工学报,2014,65:55-60. TAN J,ZHAO J J,XU J H,et al.Flow and dispersion performance of gas/ionic liquid systems in microchannels[J].CIESC Journal,2014,65:55-60. [61] 张璠玢,朱春英,付涛涛,等.微通道内离子液体/乙醇混合溶液吸收CO2的传质特性[J].化工学报,2016,68:601-611. ZHANG P F,ZHU C Y,FU T T,et al.Mass transfer performance of CO2 absorption into ionic liquid/ethanol mixture in microchannel[J]. CIESC Journal,2016,68:601-611. [62] 董海峰.离子液体反应器内气液两相流动特性的研究[D].北京:中国科学院过程工程研究所,2010. DONG H F.Investigation on hydrodynamic of gas-liquid in ionic liquids reactor[D].Beijing:Institute of Process Engineering,Chinese Academy of Sciences,2010. [63] ZHANG X,DONG H,HUANG Y,et al.Experimental study on gas holdup and bubble behavior in carbon capture systems with ionic liquid[J].Chemical Engineering Journal,2012,209:607-615. [64] WANG X,DONG H,ZHANG X,et al.Numerical simulation of single bubble motion in ionic liquids[J].Chemical Engineering Science,2010,65:6036-6047. [65] CARVAJAL D,CARLESI C,MELENDEZ-VEJAR V,et al.Numerical simulation of single-bubble dynamics in high-viscosity ionic liquids using the level-set method[J].Chemical Engineering & Technology,2015,38:473-481. [66] BAO D,ZHANG X,DONG H,et al.Numerical simulations of bubble behavior and mass transfer in CO2 capture system with ionic liquids[J]. Chemical Engineering Science,2015,135:76-88. [67] YU G,ZHAO D,WEN L,et al.Viscosity of ionic liquids:database,observation,and quantitative structure-property relationship analysis[J]. AIChE Journal,2012,58:2885-2899. [68] 鲍迪.离子液体体系中气泡行为与传递特性的数值模拟[D].北京:中国科学院过程工程研究所,2016. BAO D.Numerical simulation of bubble behaviors and transport phenomena in ionic liquid systems[D]. Beijing:Institute of Process Engineering,Chinese Academy of Sciences,2016. [69] HUANG Y,DONG H,ZHANG X,et al. New fragment contribution-corresponding states method for physicochemical properties prediction of ionic liquids[J]. AIChE Journal,2013,59:1348-1359. [70] SHIRANI E,ASHGRIZ N,MOSTAGHIMI J.Interface pressure calculation based on conservation of momentum for front capturing methods[J].Journal of Computational Physics,2005,203:154-175. [71] WANG X,DONG H,ZHANG X,et al.Numerical simulation of absorbing CO2 with ionic liquids[J]. Chemical Engineering & Technology,2010,33:1615-1624. [72] LUO H,SVENDSEN H F.Theoretical model for drop and bubble breakup in turbulent dispersions[J].AIChE Journal,1996,42:1225-1233. [73] 徐琰,董海峰,田肖,等.鼓泡塔中离子液体-空气两相流的CFD-PBM耦合模拟[J].化工学报,2011,62:2699-2706. XU Y,DONG H F,TIAN X,et al.CFD-PBM coupled simulation of ionic liquid-air two-phase flow in bubble column[J]. CIESC Journal,2011,62:2699-2706. [74] 王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004. WANG F J.Computational fluid dynamics analysis:application and principles of CFD software[M].Beijing:Tsinghua University Press,2004. [75] OUYANG Z,BAO D,ZHANG X,et al.Numerical simulation of CO2-ionic liquid flow in a stirred tank[J].Science China-Chemistry,2015,58:1918-1928. [76] BRUCATO A,GRISAFI F,MONTANTE G.Particle drag coefficients in turbulent fluids[J].Chemical Engineering Science,1998,53:3295-3314. [77] 张芳芳,丁玉栋,朱恂,等.不同流型下离子液体-MEA复合工质平板降膜吸收CO2特性[J].化工学报,2015,66:1670-1676. ZHANG F F,DING Y D,ZHU X,et al.Falling film absorption of CO2 into ionic liquid-MEA mixed solutions with different flow patterns[J].CIESC Journal,2015,66:1670-1676. [78] 项银.离子液体吸收CO2塔内构件的研究[D].北京:北京化工大学,2014. XIANG Y.Study of column internals on ionic liquids absorb CO2[D].Beijing:Beijing University of Chemical Technology,2014. [79] 代成娜,项银,雷志刚.规整填料塔中离子液体吸收CO2的传质与流体动力学性能[J].化工学报,2015,66:2953-2961. DAI C N,XIANG Y,LEI Z G.Mass transfer and hydraulic performance of CO2 absorption by ionic liquids over structured packings[J].CIESC Journal,2015,66:2953-2961. [80] TSAOULIDIS D,DORE V,ANGELI P,et al.Flow patterns and pressure drop of ionic liquid-water two-phase flows in microchannels[J]. International Journal of Multiphase Flow,2013,54:1-10. [81] TSAOULIDIS D,ANGELI P.Effect of channel size on liquid-liquid plug flow in small channels[J].AIChE Journal,2016,62:315-324. [82] BAI L,FU Y,ZHAO S,et al.Droplet formation in a microfluidic T-junction involving highly viscous fluid systems[J].Chemical Engineering Science,2016,145:141-148. [83] HUANG J P,GE X H,XU J H,et al.Controlled formation and coalescence of paramagnetic ionic liquid droplets under magnetic field in coaxial microfluidic devices[J].Chemical Engineering Science,2016,152:293-300. [84] FENG X,YI Y,YU X,et al.Generation of water-ionic liquid droplet pairs in soybean oil on microfluidic chip[J].Lab on a Chip,2010,10:313-319. [85] 张欣.离子液体气液体系流动及传质规律研究[D].北京:中国科学院过程工程研究所,2015. ZHANG X.Study on the hydrodynamics and mass transfer properties in gas-ionic liquid systems[D]. Beijing:Institute of Process Engineering,Chinese Academy of Sciences,2015. [86] ONINK F,DRUMM C,MEINDERSMA G W,et al.Hydrodynamic behavior analysis of a rotating disc contactor for aromatics extraction with 4-methyl-butyl-pyridinium center dot BF4 by CFD[J].Chemical Engineering Journal,2010,160:511-521. [87] KAMINSKI K,KRAWCZYK M,AUGUSTYNIAK J,et al.Electrically induced liquid-liquid extraction from organic mixtures with cross mark the use of ionic liquids[J].Chemical Engineering Journal,2014,235:109-123. [88] TORRES-MARTINEZ D,MELGAREJO-TORRES R,GUTIERREZ-ROJAS M,et al. Hydrodynamic and oxygen mass transfer studies in a three-phase(air-water-ionic liquid) stirred tank bioreactor[J]. Biochemical Engineering Journal,2009,45:209-217. [89] GOETZ M,LEFEBVRE J,MOERS F,et al.Hydrodynamics of organic and ionic liquids in a slurry bubble column reactor operated at elevated temperatures[J].Chemical Engineering Journal,2016,286:348-360. |
[1] | 王云飞, 秦蕊, 郑利军, 李焱, 李清平. 旋转填充床CFD模拟研究进展[J]. 化工进展, 2023, 42(S1): 1-9. |
[2] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[3] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[4] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[5] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[6] | 陈蔚阳, 宋欣, 殷亚然, 张先明, 朱春英, 付涛涛, 马友光. 矩形微通道内液相黏度对气泡界面的作用机制[J]. 化工进展, 2023, 42(7): 3468-3477. |
[7] | 杨许召, 李庆, 袁康康, 张盈盈, 韩敬莉, 吴诗德. 含Gemini离子液体低共熔溶剂热力学性质[J]. 化工进展, 2023, 42(6): 3123-3129. |
[8] | 吕超, 张习文, 金理健, 杨林军. 新型两相吸收剂-离子液体系统高效捕获CO2[J]. 化工进展, 2023, 42(6): 3226-3232. |
[9] | 陶梦琦, 刘美红, 康宇驰. 基于micro-PIV的微通道内流体绕流单微圆柱和并联双微圆柱流场特性[J]. 化工进展, 2023, 42(6): 2836-2844. |
[10] | 田启凯, 郑海萍, 张少斌, 张静, 余子夷. 混合增强的微流控通道进展[J]. 化工进展, 2023, 42(4): 1677-1687. |
[11] | 张成松, 张静, 龚斌, 李明洋, 袁佳新, 李宏业. 自吸射流柔性搅拌桨振动特性[J]. 化工进展, 2023, 42(4): 1728-1738. |
[12] | 闫兴清, 戴行涛, 喻健良, 李岳, 韩冰, 胡军. 高压氢气泄漏射流研究进展[J]. 化工进展, 2023, 42(3): 1118-1128. |
[13] | 罗小平, 樊鹏, 周建阳, 王梦圆. 不同波纹壁面微细通道沸腾曲线及沸腾起始点研究[J]. 化工进展, 2023, 42(3): 1228-1239. |
[14] | 黄起中, 刘冰, 马红鹏, 吕文杰. 基于新型微通道分离技术的甲醇制烯烃废水处理[J]. 化工进展, 2023, 42(2): 669-676. |
[15] | 乔元, 仇畅, 钱锦远, 干瑞彬, 徐春明, 金志江. 笼式调节阀的冲蚀磨损与空蚀[J]. 化工进展, 2023, 42(10): 5111-5120. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |