[1] GASLJEVIC K,HOYER K,MATTHYS E F. Temporary degradation and recovery of drag-reducing surfactant solutions[J]. Journal of Rheology (1978-present),2007,51(4):645-667. [2] 焦利芳,李风臣,苏文涛. 表面活性剂减阻剂在集中供热系统中的应用试验研究[J]. 节能技术,2008,26(3):195-201. [3] KROPE A,LIPUS L C. Drag reducing surfactants for district heating[J]. Applied Thermal Engineering,2010,30(8):833-838. [4] MA N,WEI J,WANG J. Evaluation of surfactant drag reduction effect in a district heating system[J]. Advances in Mechanical Engineering,2011,3:947179. [5] HOFFMANN H. Structure formation in surfactant solutions:a personal view of 35years of research in surfactant science[J]. Advances in Colloid and Interface Science,2012,178:21-33. [6] 魏进家,姚志强. 一种界面活性剂减阻溶液的流变特性[J]. 化工学报,2007,58(2):335-340. [7] 马宁,魏进家. 中等浓度表面活性剂溶液流变特性的实验研究[J]. 西安交通大学学报,2012,46(1):30-34. [8] XU N,WEI J J. Time-dependent shear-induced nonlinear viscosity effects in dilute CTAC/NaSal Solutions:mechanism analyses[J]. Advances in Mechanical Engineering,2014,6:179394. [9] LU B,LI X,SCRIVEN L E,et al. Effect of chemical structure on viscoelasticity and extensional viscosity of drag-reducing cationic surfactant solutions[J]. Langmuir,1998,14(1):8-16. [10] LIN Z,MATEO A,ZHENG Y,et al. Comparison of drag reduction,rheology,microstructure and stress-induced precipitation of dilute cationic surfactant solutions with odd and even alkyl chains[J]. Rheologica Acta,2002,41(6):483-492. [11] FÖRSTER S,PLANTENBERG T. From self‐organizing polymers to nanohybrid and biomaterials[J]. Angewandte Chemie International Edition,2002,41(5):688-714. [12] NARAYANAN J,MENDES E,Manohar C. Vesicle to micelle transition driven by surface solid-fluid transition[J]. International Journal of Modern Physics B,2002,16(01n02):375-382. [13] YIN H,HUANG J,LIN Y,et al. Heating-induced micelle to vesicle transition in the cationic-anionic surfactant systems:comprehensive study and understanding[J]. The Journal of Physical Chemistry B,2005,109(9):4104-4110. [14] KOSAKA Y,ITO M,KAWABATA Y,et al. Lamellar-to-onion transition with increasing temperature under shear flow in a nonionic surfactant/water system[J]. Langmuir,2009,26(6):3835-3842. [15] ITO M,KOSAKA Y,KAWABATA Y,et al. Transition processes from the lamellar to the onion state with increasing temperature under shear flow in a nonionic surfactant/water system studied by rheo-SAXS[J]. Langmuir,2011,27(12):7400-7409. [16] SATO D,OBARA K,KAWABATA Y,et al. Re-entrant lamellar/onion transition with varying temperature under shear flow[J]. Langmuir,2012,29(1):121-132. [17] CAPPELAERE E,CRESSELY R,MAKHLOUFI R,et al. Temperature and flow-induced viscosity transitions for CTAB surfactant solutions[J]. Rheologica Acta,1994,33(5):431-437. [18] ZHOU Y B,XU N,MA N,et al. On Relationships among the aggregation number,rheological property,and turbulent drag-reducing effect of surfactant solutions[J]. Advances in Mechanical Engineering,2011,3:345328. [19] FULLER G G,CATHEY C A,Hubbard B,et al. Extensional viscosity measurements for low‐viscosity fluids[J]. Journal of Rheology(1978-present),1987,31(3):235-249. [20] DONTULA P,PASQUALI M,SCRIVEN L E,et al. Can extensional viscosity be measured with opposed-nozzle devices?[J]. Rheologica Acta,1997,36(4):429-448. [21] SIGINER A. General Weissenberg effect in free surface rheometry part I:analytical considerations[J]. Zeitschrift für Angewandte Mathematik und Physik ZAMP,1984,35(4):545-558. [22] WEI J J,LI F C,YU B,et al. Swirling flow of a viscoelastic fluid with free surface—Part I:experimental analysis of vortex motion by PIV[J]. Journal of Fluids Engineering,2006,128(1):69-76. [23] WEI J J,KAWAGUCHI Y,YU B,et al. Microstructures and rheology of micellar surfactant solution by Brownian dynamics simulation[J]. Nonlinear Dynamics,2010,61(3):503-515. [24] WEI J J,KAWAGUCHI Y,YU B,et al. Brownian dynamics simulation of microstructures and elongational viscosities of micellar surfactant solution[J]. Chinese Physics Letters,2008,25(12):4469. [25] 魏进家,川口靖夫,宇波,等. 表面活性剂溶液内部微观结构和流变特性研究[J]. 工程热物理学报,2008,29(5):803-806. [26] ZHANG C W,WEI J. Mesoscale simulation study of the structure and rheology of dilute solutions of flexible micelles[J]. Chemical Engineering Science,2013,102:544-550. [27] MAGID L J,LI Z,BUTLER P D. Flexibility of elongated sodium dodecyl sulfate micelles in aqueous sodium chloride:a small-angle neutron scattering study[J]. Langmuir,2000,16(26):10028-10036. [28] 王剑峰,魏进家,李凤臣,等. 表面活性剂溶液的减阻和传热特性研究[J]. 工程热物理学报,2010(11):1859-1862. [29] SUBBARAO C V,DIVYA P,APPALANAIDUM D,et al. Drag reduction by anionic surfactant solutions in gravity driven flow systems[J]. Iranian Journal of Chemistry and Chemical Engineering,2013,32(1):95-101. [30] 魏进家,川口靖夫. 一种新型两性界面活性剂的减阻特性[J]. 化工学报,2006,57(11):2750-2754. [31] CAI S,HIGUCHI Y. Drag-reduction behavior of an unusual nonionic surfactant in a circular pipe turbulent flow[J]. Journal of Hydrodynamics,Ser. B,2014,26(3):400-405. [32] 顾卫国,王德忠,川口靖夫,等. 矩形槽道内表面活性剂减阻流体流场特性[J]. 力学学报,2010,42(2):312-318. [33] HADRI F,BESQ A,GUILLOU S,et al. Temperature and concentration influence on drag reduction of very low concentrated CTAC/NaSal aqueous solution in turbulent pipe flow[J]. Journal of Non-Newtonian Fluid Mechanics,2011,166(5):326-331. [34] TUAN N A,MIZUNUMA H. High-shear drag reduction of surfactant solutions[J]. Journal of Non-Newtonian Fluid Mechanics,2013,198:71-77. [35] 马宁,徐娜,魏进家,等.表面活性剂溶液最大减阻率及其尺度放大[J]. 工程热物理学报,2013,9:017. [36] BOUTOUDJ M S,OUIBRAHIM A,DESLOUIS C. Mass transfer in elongational laminar and turbulent flows of drag reducing solutions of quaternary ammonium surfactants. Influence of the counter-ion to surfactant concentrations ratio[J]. Chemical Engineering and Processing:Process Intensification,2015,93:34-43. [37] WEI J J,WANG J F,ZHANG C W,et al. Combined effects of temperature and Reynolds number on drag‐reducing characteristics of a cationic surfactant solution[J]. The Canadian Journal of Chemical Engineering,2012,90(5):1304-1310. [38] WEI J J,KAWAGUCHi Y,LI F C,et al. Drag-reducing and heat transfer characteristics of a novel zwitterionic surfactant solution[J]. International Journal of Heat and Mass Transfer,2009,52(15):3547-3554. [39] TAMANO S,IKARASHI H,MORINISHI Y,et al. Drag reduction and degradation of nonionic surfactant solutions with organic acid in turbulent pipe flow[J]. Journal of Non-Newtonian Fluid Mechanics,2015,215:1-7. [40] ABDULBARI H A,YUNUS R M,ABDURAHMAN N H,et al. Going against the flow—A review of non-additive means of drag reduction[J]. Journal of Industrial and Engineering Chemistry,2013,19(1):27-36. [41] CAI W H,LI F C,ZHANG H N,et al. Study on the characteristics of turbulent drag-reducing channel flow by particle image velocimetry combining with proper orthogonal decomposition analysis[J]. Physics of Fluids(1994-present),2009,21(11):115103. [42] HADRI F,GUILLOU S. Drag reduction by surfactant in closed turbulent flow[J]. Int. J. Eng. Sci. Tech.,2010,2(12):6876-6879. [43] MOTOZAWA M,WATANABE T,KAWAGUCHI Y. PIV measurements of large-scale structures in a drag-reducing channel flow with surfactant additives[J]. 日本レオロジー学会誌,2011,39(3):99-104. [44] 魏进家,川口靖夫. 零下温度时二维通道内界面活性剂减阻流动的实验研究[J]. 西安交通大学学报,2006,40(1):79-83. [45] WEI J J,KAWAGUCHI Y,LI F C,et al. Reduction and turbulence characteristics in sub-zero temperature range of cationic and zwitterionic surfactants in EG/water solvent[J]. Journal of Turbulence,2009 (10):N10. [46] KAWAGUCHI Y,LI F C,YU B,et al. Turbulent drag reduction with surfactant additives—basic research and application to an air conditioning system[M]//new trends in fluid mechanics research. Springer Berlin Heidelberg,2009:29-36. [47] LI F C,YU B,Wei J J,et al. Turbulent drag reduction by surfactant additives[M]. John Wiley & Sons,2012. [48] YU B,LI F,KAWAGUCHI Y. Numerical and experimental investigation of turbulent characteristics in a drag-reducing flow with surfactant additives[J]. International Journal of Heat and Fluid Flow,2004,25(6):961-974. [49] 顾卫国. 表面活性剂减阻流体减阻机理的实验与直接数值模拟研究[D]. 上海:上海交通大学,2010. [50] GU W,WANG D,KAWAGUCHI Y. Study on the drag reducing channel fluids by experiments and dns using giesekusmodel[J]. Advances in Mechanical Engineering,2014,6:175059. [51] WANG Y,YU B,WU X,et al. POD study on large-scale structures of viscoelastic turbulent drag-reducing flow[J]. Advances in Mechanical Engineering,2014,6:574381. [52] LI Fengchen,WANG Lu,CAI Weihua. A new subgrid-scale model for large eddy simulation LES of turbulent drag-reducing flows of viscoelastic fluids[J]. Chinese Physics B,2015,24(7):074701. [53] YU B,WU X,WEI J,et al. DNS study by a bilayer model on the mechanism of heat transfer reduction in drag-reduced flow induced by surfactant[J]. International Communications in Heat and Mass Transfer,2011,38(2):160-167. [54] WANG Y,YU B,WU X,et al. POD study on the mechanism of turbulent drag reduction and heat transfer reduction based on Direct Numerical Simulation[J]. Progress in Computational Fluid Dynamics,an International Journal,2011,11(3/4):149-159. [55] 庞明军,魏进家,王剑峰,等. 提高表面活性剂减阻溶液传热研究进展[J]. 化工进展,2009,28(10):1693-1700. [56] WANG Y,SHI H,FANG B,et al. Heat transfer enhancement for drag-reducing surfactant fluid using photo-rheological counterion[J]. Experimental Heat Transfer,2012,25(3):139-150. [57] Różański J. Heat transfer in the thermal entrance region for drag reduction surfactant solutions in pipe flow[J]. International Journal of Heat and Mass Transfer,2012,55(4):1113-1125. [58] QI Y,KAWAGUCHI Y,CHRISTENSEN R N,et al. Enhancing heat transfer ability of drag reducing surfactant solutions with static mixers and honeycombs[J]. International Journal Of Heat and Mass Transfer,2003,46(26):5161-5173. [59] LI P,KAWAGUCHI Y,DAISAKA H,et al. Heat transfer enhancement to the drag-reducing flow of surfactant solution in two-dimensional channel with mesh-screen inserts at the inlet[J]. Journal of Heat Transfer,2001,123(4):779-789. [60] YANG S Q,DOU G. Turbulent drag reduction with polymer additive in rough pipes[J]. Journal of Fluid Mechanics,2010,642:279-294. [61] SEMENOV B N. The combination of polymer,compliant wall,and microbubble drag reduction schemes[J]. Advances in Mechanical Engineering,2011,3:743975. [62] KIM J T,AM KIM C,ZHANG K,et al. Effect of polymer–surfactant interaction on its turbulent drag reduction[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2011,391(1):125-129. [63] BEWERSDORFF H W,Thiel H. Turbulence structure of dilute polymer and surfactant solutions in artificially roughened pipes[J]. Applied Scientific Research,1993,50(3/4):347-368. [64] DE Guzman M R,SAEKI T,Usui H,et al. Surfactant drag reduction in internally-grooved rough tubes[J]. Journal of Chemical Engineering of Japan,1999,32(4):402-408. [65] RÓŻAŃSKI J. Flow of drag-reducing surfactant solutions in rough pipes[J]. Journal of Non-Newtonian Fluid Mechanics,2011,166(5):279-288. [66] HUANG C H,WEI J J. Experimental study on collaborative drag reduction performance of surfactant solution in grooved channels[J]. Brazilian Journal of Chemical Engineering,2016,in Press. [67] QI YY,KESSELMAN E,HART D J,et al. Comparison of oleyl and elaidyl isomer surfactant–counterion systems in drag reduction,rheological properties and nanostructure[J]. Journal of Colloid and Interface Science,2011,354(2):691-699. [68] MYSKA J,MIK V. Application of a drag reducing surfactant in the heating circuit[J]. Energy and Buildings,2003,35(8):813-819. [69] EZRAHI S,TUVAL E,ASERIN A. Properties,main applications and perspectives of worm micelles[J]. Advances in Colloid and Interface Science,2006,128:77-102. [70] BANNAI M,KUWABARA K,ITASAKA H. Energy-saving in chilled-water supply system for clean room of semiconductor manufacturing plant[J]. Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers,2012,23: 133-143. [71] HOYT J W. Scale-up from laboratory pipe-flow data to large flows[C]//ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. American Society of Mechanical Engineers,2003:745-749. [72] KAWAGUCHI Y,TAWARAYA Y,YABE A,et al. Turbulent transport mechanism in a drag reducing flow with surfactant additive investigated by two component LDV[C]//Proceedings of 8th International Symposium on Application of Laser Techniques to Fluid Mechanics. 1996,29:1-29.4. |