化工进展 ›› 2016, Vol. 35 ›› Issue (06): 1606-1626.DOI: 10.16085/j.issn.1000-6613.2016.06.003
任海伦1,2, 安登超2,3, 朱桃月2,3, 李海龙2,3, 李鑫钢1,2
收稿日期:
2016-01-29
修回日期:
2016-03-12
出版日期:
2016-06-05
发布日期:
2016-06-05
通讯作者:
李鑫钢,教授,从事传质与分离研究。E-mail:lxg@tju.edu,cn。
作者简介:
任海伦(1978-),男,副研究员,从事传质与分离研究。
REN Hailun1,2, AN Dengchao2,3, ZHU Taoyue2,3, LI Hailong2,3, LI Xingang1,2
Received:
2016-01-29
Revised:
2016-03-12
Online:
2016-06-05
Published:
2016-06-05
摘要: 精馏是化学工业中应用最广泛的关键共性技术,广泛应用于石油、化工、化肥、制药、环境保护等行业。精馏具有应用广泛、技术成熟等优点,但存在设备投资大、分离能耗高等问题,因此研究开发新型高效传质元件、开发新型节能精馏技术,具有重要的社会意义和经济价值。本文从精馏塔类型、流体力学性能、传质性能、塔器大型化、过程节能、过程强化等方面,介绍了精馏技术的研究进展与工业应用。对于板式塔,从气液两相流动状态、压降、漏液和雾沫夹带方面研究了塔板的流体力学性能;对于填料塔,从压降、液泛和持液量方面研究了填料塔的流体力学性能,但目前的研究仍以经验关联式为主,缺乏严谨的的理论模型。对于气液两相的传质性能研究,简述了气液两相传质理论,但科学、精准的传质模型尚未提出。对于塔器大型化的应用研究,介绍了塔板、气液分布器和支撑装置等大型化关键技术的工业应用。从精馏过程典型节能技术、耦合节能技术、流程节能技术、低温余热回收和特殊精馏等方面,介绍了精馏过程节能与强化的应用进展。文章最后对精馏过程的传质、强化和集成进行了展望。
中图分类号:
任海伦, 安登超, 朱桃月, 李海龙, 李鑫钢. 精馏技术研究进展与工业应用[J]. 化工进展, 2016, 35(06): 1606-1626.
REN Hailun, AN Dengchao, ZHU Taoyue, LI Hailong, LI Xingang. Distillation technology research progress and industrial application[J]. Chemical Industry and Engineering Progree, 2016, 35(06): 1606-1626.
[1] 李苏雅,王文建. 塔板技术应用研究进展[J]. 化工技术与开发,2011,40(12):30-34. [2] FRYBACK M G,HUFNAGEL J A. Distillation-equipment design[J]. Industrial & Engineering Chemistry,1960,52(8):654-661. [3] BETLEM B H L,RIJNSDORP J E,AZINK R F. Influence of tray hydraulics on tray column dynamics[J]. Chemical Engineering Science,1998,53(23):3991-4003. [4] CHEN J,LIU Y,TAN T. Projection velocities of droplets in the spray regime of sieve tray operation[J]. Industrial & Engineering Chemistry Research,1999,38(6):2505-2509. [5] 曹纬. 国外塔板的发展及新板型介绍[J]. 石油化工设备,1991,20(4):34-37. [6] Guerrieri S A. Bubble cap tray:US3914352 [P]. 1975-10-21. [7] Guerrieri S A. Bubble cap tray:US4104338 [P]. 1978-08-01. [8] 董宇. 高效泡罩塔板流体力学及传质性能研究[D]. 西安:西安石油大学,2012. [9] DELNICKI W,WAGNER J. Performance of multiple down comer trays[J]. Chemical Engineering Progress,1970,66(3):50-56. [10] 左美兰. 塔板最新研究和展望[J]. 化学工业与工程技术,2009,30(1):27-31. [11] 姚克俭,章渊昶,王良华,等. 新型高效大通量DJ系列塔板的研究与工业应用[J]. 化工进展,2003,22(3):228-232. [12] 付有成,王崇智. 板式塔精馏技术进展[J]. 石化技术与应用,2000,18(4):231-236. [13] 王少锋,项曙光. 浮阀塔板最新应用研究进展[J]. 化工进展,2014,33(7):1677-1683. [14] 路秀林,刘秀囡,赵培. 导向浮阀塔板:91215110. 2[P]. 1991-02-02. [15] 王忠诚,曾爱武,吴剑华,等. 新型塔板-导向梯形浮阀塔板的流体力学性能[J]. 石油炼制与化工,1995,26(11):36-40. [16] 杨宝华,严錞. ADV系列浮阀塔板的开发与工业应用[J]. 石油化工设计,2004,21(2):41-45. [17] 刘霞,李洪,高鑫,等. 泡沫碳化硅陶瓷材料的研究进展[J]. 化工进展,2012,31(11):2520-2525. [18] 钱建兵,朱慎林. 板式塔及分离技术最新进展[J]. 浙江化工,2003,34(11):1-4. [19] SPAGNOLO D A,CHUANG T T. Improving sieve tray performance with knitted mesh packing[J]. Industrial & Engineering Chemistry Process Designand Development,1984,23(3):561-565. [20] 徐崇嗣,CHUANG K T. 塔设备的对比及其改进[J]. 石油化工设备,1989,18(2):2-6. [21] CONG H F,LI X G,LI Z J,et al. Combination of spiral nozzle and column tray leading to a new direction on the distillation equipment in novation[J]. Separation and Purification Technology,2016,158(28):293-301. [22] 杜冬云,方云进,肖博文. 新型垂直筛板塔研究的进展[J]. 石油化工,1998,27(5):374-378. [23] 吕建华,刘继东. 立体传质塔板CTST技术及其在炼油装置中的应用[J]. 化工进展,2006,25(s1):13-16. [24] 韩联国,杜刚,杜军峰. 填料塔技术的现状与发展趋势[J]. 中氮肥,2009,32(6):32-34. [25] 费维扬. 美国三家新型填料制造公司[J]. 现代化工,1988,8(5):49-54. [26] 蒋庆哲,宋昭峥,彭洪湃,等. 塔填料的最新研究现状和发展趋势[J]. 现代化工,2008,28(s1):59-64. [27] 唐营. 填料塔设计及核算软件开发[D]. 青岛:青岛科技大学,2012. [28] 晏莱,周三平. 现代填料塔技术发展现状与展望[J]. 化工装备技术,2007,28(3):29-34. [29] 王树楹. 现代填料塔技术指南[M]. 北京:中国石化出版社,1998:33-82. [30] HOFHUIS P A,ZUIDERWEG F J. Sieve plates:dispersion density and flow regimes [J]. Instn. Chem. Engr. Symp. Ser. ,1979,2(56):21-26. [31] ZUIDERWEG F. Sieve trays:a view on the state of the art[J]. Chemical Engineering Science,1982,37(10):1441-1464. [32] STICHLMAIR J,MERSMANN A. Dimensioning plate columns for absorption and rectification[J]. International Chemical Engineering,1978,18(2):223-236. [33] 张志恒. 浮阀塔板流体力学和传质性能的研究[D]. 天津:天津大学,2005. [34] MEHTA B,CHUANG K T,NANDAKUMAR K. Model for liquid phase flow on sieve trays[J]. Chemical Engineering Research and Design,1998,76(7):843-848. [35] PINCZEWSKI W V,FELL C J D. Froth to spray transition on sieve trays[J]. Industrial & Engineering Chemistry Process Design and Development,1982,21(4):774-776. [36] LOCKETT M,BANIK S. Weeping from sieve trays[J]. Industrial & Engineering Chemistry Process Design and Development,1986,25(2):561-569. [37] 黄洁,吴剑华,王平. 塔板漏液速率和气速下限的计算[J]. 化学工程,1990,18(3):44-49. [38] 尚智,贾斗南. 筛板塔漏液点气速的计算模型[J]. 化学工业与工程,1998,15(4):22-24. [39] KISTER H Z,HAAS J R. Entrainment from sieve trays in the froth regime[J]. Industrial & Engineering Chemistry Research,1988,27(12):2331-2341. [40] SINGH J,GARG M O,NANOTI S M. Comparison of flow patterns in a visbreaking soaker drum with two different sieve tray Internals[J]. Industrial & Engineering Chemistry Research,2011,51(4):1815-1825. [41] HUNT C D A,HANSON D,WILKE C. Capacity factors in the performance of perforated-plate columns[J]. AIChE Journal,1955,1(4):441-451. [42] 王广全,袁希钢,刘春江,等. 规整填料压降研究新进展[J]. 化学工程,2005,33(3):4-7. [43] HANLEY B,DUNBOBBIN B,BENNETT D. A unified model for countercurrent vapor/liquid packed columns. 1. Pressure drop[J]. Industrial & Engineering Chemistry Research,1994,33(5):1208-1221. [44] OLUJIC Z. Development of a complete simulation model for predicting the hydraulic and separation performance of distillation columns equipped with structured packings[J]. Chemical and Biochemical Engineering Quarterly,1997,11(1):31-46. [45] ILIUTA I,LARACHI F. Mechanistic model for structured-packing-containing columns:irrigated pressure drop,liquid holdup,and packing fractional wetted area[J]. Industrial & Engineering Chemistry Research,2001,40(23):5140-5146. [46] 张峰,金伟娅,方志明,等. 填料塔液泛性能的研究现状与发展趋势[J]. 轻工机械,2012,30(5):104-107. [47] WOERLEE G F,BERENDS J A. Capacity model for vertical pipes and packed columns based on entrainment[J]. Chemical Engineering Journal,2001,84(6):355-366. [48] HUTTON B E T,LEUNG L S,BROOKS P C,et al. On flooding in packed columns[J]. Chemical Engineer Science,1974,29:493-500. [49] SHERWOOD T K,SHIPLEY G H,HOLLOWAY F A L. Flooding velocities in packed column[J]. Industrial Engineer Chemical,1938,30:765-770. [50] ECKERT J S. What affects packing performance[J]. Chemical Engineer Progress,1966,62(1):18-26. [51] BILLET R,SCHULTES M. Fluid dynamics and mass transfer in the total capacity range of packed columns up to the flood point[J]. Chemical Engineering & Technology,1995,18:371-379. [52] GREEN C W,FARONE J,BRILEY J K,et al.Novel application of x-ray computed tomography: determination of gasquid contact area and liquid holdup in structured packing[J]. Industrial &Engineering Chemistry Research,2007,46(17):5734-5753. [53] KAISER V. AIChE Spring National Meeting[C]. Houston,1993:55-59. [54] 马友光,白鹏,余国琮. 气液传质理论研究进展[J]. 化学工程,1996,24(6):7-12. [55] LAMOUT J C,SCOTT D S. An eddy cell model of mass transfer into the surface of a turbulent liquid[J]. AIChE Journal,1970,16:513-519. [56] 杨宏喜. 一种新型浮阀塔板传质性能的研究[D]. 上海:华东理工大学,2012. [57] ZHANG L H,LIU X K,LI X G,et al. A novel SiC foam valve tray for distillation columns[J]. Chinese Journal of Chemical Engineering,2013,21(8):821-826. [58] 高鑫,李鑫钢,魏娜,等.多孔介质泡沫材料在蒸馏过程中的应用[J].化工进展,2013,32(6):1313-1319. [59] 李鑫钢,刘霞,高鑫,等.新型泡沫碳化硅塔板的流体力学及传质性能[J].天津大学学报(自然科学与工程技术版),2014,47(2):155-162. [60] 李洪,傅龙,丛山,等. 新型碳化硅泡沫阀塔盘的流体力学性能[J]. 化学工程,2015,43(11):20-24. [61] GAO X,LI X G,LIU X,et al.A novel potential application of SiC ceramic foam material to distillation:foam monolithic tray[J]. Chemical Engineering Science,2015,135:489-500. [62] LI H,FU L,LI X G,et al. Mechanism and analytical models for the gas distribution on the SiC foam monolithic tray[J]. AIChE Journal,2015,61(12):4509-4516. [63] BILLET R,SCHULTES M. Predicting mass transfer in packed columns[J]. Chem. Eng. Technol.,1993,16:1-9. [64] BRAVO J L,ROCHA J A,FAIR J R. Mass transfer in gauze packings[J]. Hydrocarbon Process,1985,64(1):91-95. [65] SHETTY S A,CERRO R L. Estimation of liquid distribution and mass transfer parameters for ordered packings[J]. Inst. Chem. Eng. Symp. Ser.,1997,142(2):853-864. [66] CORNELL D,KNAPP W G,FAIR J R. Mass transfer efficiency packed column—part1[J]. Chemical Engineering Progress,1960,56(7):68-74. [67] 曾菁,高鑫,李洪,等.泡沫碳化硅波纹规整填料的流体力学及传质性能[J].现代化工,2012,32(10):70-73. [68] 李洪,姚跃宾,王方舟,等.液相流动方式对波纹规整填料性能的影响[J].化工学报,2014,65(12):4760-4766. [69] LI H,WANG F Z,WANG C C,et al.Liquid flow behavior study in SiC foam corrugated sheet using a novel ultraviolet fluorescence technique coupled with CFD simulation[J]. Chemical Engineering Science,2015,123:341-349. [70] 陈江波. 高压下规整填料塔的计算传递和传质性能[D]. 天津:天津大学,2006. [71] WANG G,YUAN X,YU K. Review of mass-transfer correlations for packed columns[J]. Industrial & Engineering Chemistry Research,2005,44(23):8715-8729. [72] 王晓玲,刘春江,余国琮. 计算流体力学在精馏塔板上的应用[J]. 化学工业与工程,2001,18(6):390-394. [73] 王立成,王晓玲,刘雪艳,等. CFD在精馏分离中的应用[J]. 化工进展,2009,28(s2):351-354. [74] YU K T. Some progress of distillation research and industrial applications in China[C]// IChemE Symposium Series,1992,v1:A139-A166. [75] 李鑫钢. 现代蒸馏技术[M]. 北京:化学工业出版社,2008:45-81. [76] 李建隆. 大型精馏塔板上液体流动性能的研究[D]. 天津:天津大学,1985. [77] YOSHIDA H. Liquid flow over distillation column plates[J]. Chemical Engineering Communications,1987,51(1-6):261-275. [78] ZHANG M Q,YU K T. Simulation of two dimensional liquid phase flow on a distillation tray[J]. Chinese Journal of Chemical Engineering,1994,2(2):63-71. [79] LIU C J,YUAN X G,YU K T,et al. A fluid-dynamic model for flow pattern on a distillation tray[J]. Chem. Eng. Sci.,2000,55(12):2287-2294. [80] ELGHOBASHI S E,ABOU-ARAB T W. A two-equation turbulence model for two-phase flows[J]. Physics of Fluids,1983,26(4):931-938. [81] 袁希钢,尤学一,余国琮. 筛孔塔板气液两相流动的速度场模拟[J]. 化工学报,1995,46(4):511-515. [82] GESIT G,NANDAKUMAR K,CHUANG K T. CFD modeling of flow patterns and hydraulics of commercial-scale sieve trays[J]. AIChE Journal,2003,49(4):910-924. [83] 高国华. 新型多孔泡沫塔盘和规整填料的多尺度模拟研究[D]. 天津:天津大学,2011. [84] LI X G,YANG N,SUN Y,et al. Computational fluid dynamics modeling of hydrodynamics of a new type of fixed valve tray[J]. Industrial & Engineering Chemistry Research,2013,53(1):379-389. [85] JIANG B,LIU P,ZHANG L H,et al. Hydrodynamics and mass-transfer analysis of a distillation ripple tray by computational fluid dynamics simulation[J]. Industrial & Engineering Chemistry Research,2013,52(49):17618-17626. [86] LI X G,LIU D X,XU S M,et al. CFD simulation of hydrodynamics of valve tray[J]. Chemical Engineering and Processing:Process Intensification,2009,48(1):145-151. [87] 张泽廷,王树楹,余国琮. 填料塔传质模型的研究——二维混合池随机模型[J]. 化工学报,1989,40(1):53-59. [88] 孙树瑜,王树楹,余国琮. 规整填料塔中精馏过程的三维模拟(Ⅰ)物理模型和模型方程[J]. 化工学报,1998,49(5):549-559. [89] 张鹏. 加压下规整填料塔内流体流动和传质特性的研究及其计算流体力学模拟[D]. 天津:天津大学,2002. [90] FERNANDES J,LISBOA P F,SIMÕES P C,et al. Application of CFD in the study of supercritical fluid extraction with structured packing:wet pressure drop calculations[J]. The Journal of Supercritical Fluids,2009,50(1):61-68. [91] 秦娅,刘德新,姜斌,等. 蒸馏过程大型化与节能[J]. 化工进展,2007,26(1):90-96. [92] 李文波,毛鹏生,王长英,等. 化工流程模拟技术的现状与发展[J]. 化工时刊,1998(6):3-6. [93] 杨光辉. 化工流程模拟技术及应用[J]. 山东化工,2008(8):35-38. [94] 王红星. 数字化塔器技术开发与展望[J]. 数字石油和化工,2007(3):12-14. [95] 刘世艳. 流程模拟技术在化工领域的运用[J]. 大众科技,2005(4):66-67. [96] 陈磊,宋昭峥,蒋庆哲. 我国石油化工工业的助推器-流程模拟技术[J]. 计算机与应用化学,2009(9):1121-1124. [97] 余国琮,宋海华,黄洁. 大型塔板的模拟与板效率的研究(Ⅱ)—二维定数混合池模型[J]. 化工学报,1981,32(2):97-110. [98] 余国琮,宋海华,黄洁. 精馏过程数学模拟的新方法——三维非平衡混合池模型[J]. 化工学报,1991,42(6):653-659. [99] 马海洪,许锡恩. 丁二烯萃取精馏装置全流程的过程模拟[J]. 天然气化工,1998(23):42-46. [100] 宋海华,余国琮,王秀英. 精馏过程的动态模拟[J]. 化工学报,1994,45(4):413-421. [101] 郑艳梅,李鑫钢,韩玉峰. 数字化设计技术在精馏塔器中的应用[J]. 化学工程,2008(4):5-8. [102] 刘德新,李鑫钢,徐世民. 筛孔塔板气液两相流流场的数值模拟[J]. 石油化工高等学校学报,2008(1):55-59. [103] 李鑫钢,谢宝国,吴巍,等. 精馏过程大型化集成技术[J]. 化工进展,2011,30(1):40-46. [104] 杨铠铨. 大型焦炭塔结构可靠性分析研究[D]. 天津:河北工业大学,2014. [105] 胡晖,徐世民,李鑫钢. 现代化工设备三维可视化设计[J]. 计算机与应用化学,2006,23(9):900-904. [106] 陈利,谢润兴. 塔内件的三维可视化设计[J]. 化工进展,2005,24(s1):197-198. [107] 高光英,吴浩,蓝春树,等. 新型塔板技术在640kt/a乙烯装置汽油分馏塔中的应用[J]. 石油化工设备,2007,26(s1):145-149. [108] 宋启祥,宋宗君,董易良,等. 大型塔板研究及其典型技术的工程应用[J]. 石油化工设备,2006,35(2):84-87. [109] 王智. 立体传质塔盘在齐鲁分公司1. 4Mt/a加氢裂化装置的应用[J]. 化工进展,2005,24(s1):211-213. [110] 姜斌,张吕鸿,李鑫钢,等. 塔器桁架支撑梁:1834384A[P]. 2006-09-20. [111] 余国琮,黄洁,张泽廷,等. 大型塔板的液体停留时间分布与数学模型[J]. 天津大学学报,1985(4):1-13. [112] 黄洁,余国琮. 改善大型塔板液流状态的新结构[J]. 石油化工,1984,13(3):182-189. [113] 刘德新,李鑫钢,徐世民. CFD优化精馏塔板的液流状况[J]. 化工进展,2006,25(12):1499-1503. [114] 徐世民,陈宁,干爱华,等. 大型塔板液体停留时间分布与板效率研究[J]. 化学工程,2002,30(1):12-16. [115] 赵丹,张雁,高雪颖,等. 多溢流大型塔板的计算传质学[J]. 化工学报,2011,62(9):2427-2432. [116] 高国华,李研,赵继文,等. 直管预分布管的CFD模拟研究及变径设计[J]. 化工进展,2009,28(s1):355-359. [117] 孙希谨,陈建娟,秦岭. 大型填料塔液体分布器的设计应用[J]. 石油化工设计,2002,19(1):10-15. [118] 张文卿. 大型填料塔分布器内计算流体力学行为研究及优化设计[D]. 天津:天津大学,2004. [119] 周海鹰,李鑫钢,张吕鸿. 槽式液体分布器均布性能CFD模拟的可视化研究[J]. 化工进展,2002,21(s1):186-189. [120] 王丽华,张吕鸿,周海鹰,等. 槽式液体分布器进液情况的CFD模拟及试验[J]. 石油化工设备,2005,34(5):12-15. [121] 王一军,张斌,于清,等. 新型槽式液体分布器的设计与分析[J]. 新疆石油天然气,2006,2(3):93-97. [122] 陈富荣,孙津生,高虹. 填料塔内气液分布器气体均布性能的CFD模拟[J]. 化工进展,2005,24(s1):12-14. [123] 林涛,董德福,姜斌,等. 新型塔内件在大型减压塔中的应用[J]. 炼油设计,2001,31(7):37-39. [124] 胡晖,徐世民,李鑫钢. 大型填料塔技术及其工业应用[J]. 现代化工,2005,25(7):53-55. [125] 张吕鸿,张海涛,姜斌,等. 双切向环流气体分布器结构优化的研究[J]. 化学工程,2008,36(1):33-36. [126] 金红杰,曹刚,吴恒安,等. 气体分布器的数值模拟与改进设计研究[J]. 化工机械,2009,36(1):29-31. [127] 全先亮,高光英,张秀斌,等. 乙烯装置汽油分馏塔关键技术的开发及工业应用[J]. 工业技术,2007,19(2):28-30. [128] 李旭光,干爱华,于斌. 双列叶片式气体分布器内流场的CFD模拟[J]. 化工进展,2007,26(s1):124-126. [129] 杜明. 双列叶片式气体分布器的性能研究[D]. 天津:天津大学,2008. [130] 逄金娥,王长城. 大型塔器桁架内件结构的设计与计算[J]. 石油化工设计,2012,29(3):19-21. [131] 闫晶怡. 大型塔设备的内件支撑——桁架设计[J]. 石油化工设备技术,2004,25(1):17-19. [132] 刘艳珍. 应用相对刚度相似法优化大型塔内桁架梁结构[D]. 天津:天津大学,2013. [133] FONYO Z,BENKO N. Enhacement of process integration by heat pumping[J]. Computers and Chemical Engineering,1996,20:85-90. [134] EDUARDO D,PAUL L,GABRIEL O,et al. Economic feasibility of heat pumps in distillation to reduce energy use[J]. Applied Thermal Engineering. 2009,29:1216-1223. [135] BROCHURE S. Distillation and heat pump technology[J]. Chemical Technology and Biotechnology,2003,22(47):91-100. [136] RANADE S M,CHAO Y T. Industrial heat pumps:where and when[J]. Hydrocarbon Process,1990,94(10):71-7 [137] FONYO Z,KURRAT R,RIPPIND W T,et al. Comparative analysis of various heat pump schemes applied to C4 splitters[J]. Computers and Chemical Engineering,1995,19(11):1-6. [138] FU C,GUNDERSEN T. Using exergy analysis to reduce power consumption in air separation units for oxy-combustion processes[J]. Energy,2012,44(1):60-68. [139] WILLIAN L L. Design and control of distillation columns with intermediate reboilers[J]. Industrial Engineering Chemistry Research,2004,43:8244-8250. [140] KNAPP J P,DOHERTY M F. Thermal integration of homogeneous azeotropic distillation sequences[J]. AIChE J.,1990,36(7):969-984. [141] 李鑫钢. 蒸馏过程节能与强化技术[M]. 北京:化学工业出版社,2011. [142] PETLYUK F B,PLATONOV V M,SLAVINSKI D M. Thernodynamically optimal method for separating multicomponent mixturea[J]. Int. Chem. Eng. ,1965,5(3):555-561. [143] KISS A A,BILDEA S C. A control perspective on process intensification in dividing-wall columns[J]. Chemical Engineering Process,2011,50:281-292. [144] YILDIRIM O,KISS A A,KENIG Y E. Dividing wall columns in chemical process:a review on current activities[J]. Separation Purification Technology,2011,80:403-417. [145] DEJANOVIC I,MATIJASEVIC L,OLUJIC Z. Dividing wall column—a breakthrough towards sustainable distilling[J]. Chemical Engineering Process,2010,49:559-580. [146] ASPRION N,KAIBEL G. Dividing wall columns:fundamentals and recent advances[J]. Chemical Engineering Process,2010,49:139-146. [147] SCHULTZ M A,STEWART D G. Reduce costs with dividing wall column[J]. Chemical Engineering Process,2002,5:64-71. [148] ENNENBACH F,KOLBE B,RANKE U. Divided wall columns—a novel distillation concept[J]. Proc. Technol. Quarterly,2000,5:97-103. [149] SPENCER G,PLANARUIZ F J. Consider dividing wall distillation to separate solvents[J]. Hydro. Pro.,2005,84:90-94. [150] KAIBEL G. Distillation columns with vertical partitions[J]. Chemical Engineering Technology,1987,10:92-98. [151] XIA M,YU B R,XU C J,et al. Temperature control for extractive dividing-wall column with an adjustable vapor split:methylal/methanol azeotrope separation[J]. Industrial Engineering Chemical Research,2013,52:17996-18013. [152] MUELLER I,PECH C,KENIG E Y. Rate-based analysis of reactive distillation sequences with different degrees of integration[J]. Chemical Engineering Science,2007,62:7327-7335. [153] AN D C,CAI W F,XIA M,et al. Design and control of reactive dividing-wall column for the production of methyl acetate[J]. Chemical Engineering Process,2015,92,45-60. [154] CHANG W Y,HSU P H C,CHIEN I L. Critical assessment of the energy-saving potential of an extractive dividing-wall column[J]. Industrial & Engineering Chemistry Research,2013,52:5384-5399. [155] LINNHOFF B,HINDMARSH E. Pinch design method for heat exchanger networks[J]. Chemical Engineering Science,1983,38(5):745-763. [156] 郭欣,李士雨,李金来. 低温甲醇洗装置低温段系统能效优化[J]. 化学工程,2012,40(10):10-12. [157] LUYBEN W L. Plantwide dynamic simulators in chemical processing and control[M]. New York:Marcel Dekker Inc,2002. [158] 张于峰,胡晓微,苗哲生,等. 高温热泵在除湿转轮空调系统中的性能[J]. 化工学报,2009,60(9):2177-2182. [159] 韩祯,李婧伊,随红,等. 催化裂化吸收稳定系统低温节能工艺开发初探[J]. 化工进展,2015,34(8):2940-2945. [160] 李虎,张于峰,李鑫钢,等. 低温发电系统在精馏工艺中的节能技术[J]. 化工进展,2013,32(5):1187-1193. [161] LUYBEN W L. Economic and dynamic impact of the use of excess reactant in reactive distillation systems[J]. Industrial & Engineering Chemistry Research,2000,39:2935-2946. [162] TANG Y T,CHEN Y W,YU C C,et al. Design of reactive distillations for acetic acid esterification[J]. AIChE J.,2005,51:1683-1699. [163] SUNDMACHER K,KIENLE A. Reactive distillation:status and future directions[M]. NewYork:John Wiley & Sons,2006. [164] Smith L A J ,Huddleston M N. New MTBE design now commercial[J]. Hydrocarbon Processing,1982,61(3):121-123. [165] 高鑫,李鑫钢,李洪. 催化精馏塔中催化剂填装技术的研究述评[J].化工进展,2010,29(3):419-425. [166] 高鑫,李鑫钢,张锐,等. 醋酸甲酯催化精馏水解过程模拟[J].化工学报,2010,61(9):2442-2447. [167] GAO X,LI X G,LI H. Hydrolysis of methyl acetate via catalytic distillation:simulation and design of new technological process[J]. Chemical Engineering and Processing:Process Intensification,2010,49:1267-1276. [168] 孙笑愚,李洪,高鑫,等.用于反应精馏过程可行性分析的立体图解法[J]. 现代化工,2013,33(9):96-99. [169] GAO X,WANG F Z,LI X G,et al. Heat-integrated reactive distillation process for TAME synthesis[J]. Separation and Purification Technology,2014,132:468-478. [170] GAO X,WANG F Z,ZHANG R,et al. Liquid flow behavior of a seepage catalytic packing internal for catalytic distillation column[J]. Industrial & Engineering Chemistry Research,2014,53:12793-12801. [171] 李洪,孟莹,李鑫钢,等. 乙酸戊酯酯化反应精馏过程系统控制模拟与分析[J]. 化工进展,2015,34(12):4165-4171. [172] ZHANG H,LI X G,GAO X,et al.A method for modelling catalytic distillation process based on seepage catalytic packing internal[J]. Chemical Engineering Science,2013,101:699-711. [173] GAO X,LI X G,ZHANG R,et al. Pressure drop models of seepage catalytic packing internal for catalytic distillation column[J]. Industrial & Engineering Chemistry Research,2012,51(21):7447-7452. [174] LI X G,ZHANG H,GAO X,et al. Hydrodynamic simulations of seepage catalytic packing internal for catalytic distillation column[J]. Industrial & Engineering Chemistry Research,2012,51(43):14236-14264. [175] 邱挺,吴燕翔,王良恩,等. 乙酸甲酯与甲醇共沸物催化精馏水解工艺[J]. 化工进展,2007,26(4):584-589. [176] 漆志文,孙海军,施军民,等. 伴有多反应的精馏过程数学模拟[J]. 化工学报,1999,50(4):563-567. [177] KELLEHER T,FAIR J R. Distillation studies in a high-gravity contactor[J]. Industrial Engineering Chemistry Research,1996,35:4646-4655. [178] 许明,张建文,陈建峰,等. 超重力旋转床中水脱氧过程的模型化研究[J]. 高校化学工程学报,2005,19(3):309-31 [179] 陈建峰,周绪美,郑冲. 超细颗粒的制备方法:95105344. 2[P]. 1995. [180] 徐之超,俞云良,计建炳. 折流式超重力场旋转床及其在精馏中的应用[J]. 石油化工,2005,34(8):778-780. [181] 祁贵生,刘有智,王焕,等. 超重力湿式氧化法脱除焦炉煤气中硫化氢[J]. 化工进展,2014,33(4):1045-1049. [182] BHANDARKER M,FERRON J R. Transport process in an agitated thin-film evaporator[J]. Industrial Engineering Chemistry Research,1988,27:1016-1024. [183] RUCKENSTEIN E,HASSINK W. The combined effect of diffusion and evaporation on the molecular distillation of ideal binary liquid mixture[J]. Separation Science Technology,1983,18(6): 523-545. [184] KAWALA Z,STEPHAN K. Evaporation rate and separation factor of molecular distillation in a falling film apparatus[J]. Chemical Engineering Technology,1989,12:406-413. [185] 宋凤霞,陈伟,于燕梅,等. 银盐络合物对己烯同分异构体分离的量化模拟研究[J]. 计算机与应用化学,2007,24(8):1039-1042. [186]白鹏,李晓峰,李鑫钢,等. 化学交换精馏法分离同位素硼-10研究进展[J]. 化工进展,2005,24(5):471-474. |
[1] | 张凤岐, 崔成东, 鲍学伟, 朱炜玄, 董宏光. 胺液吸收-分步解吸脱硫工艺的设计与评价[J]. 化工进展, 2023, 42(S1): 518-528. |
[2] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[3] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[4] | 王云飞, 秦蕊, 郑利军, 李焱, 李清平. 旋转填充床CFD模拟研究进展[J]. 化工进展, 2023, 42(S1): 1-9. |
[5] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[6] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[7] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[8] | 孙继鹏, 韩靖, 唐杨超, 闫汉博, 张杰瑶, 肖苹, 吴峰. 硫黄湿法成型过程数值模拟与操作参数优化[J]. 化工进展, 2023, 42(S1): 189-196. |
[9] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[10] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[11] | 李春利, 韩晓光, 刘加朋, 王亚涛, 王晨希, 王洪海, 彭胜. 填料塔液体分布器的研究进展[J]. 化工进展, 2023, 42(9): 4479-4495. |
[12] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[13] | 张帆, 陶少辉, 陈玉石, 项曙光. 基于改进恒热传输模型的精馏模拟初始化[J]. 化工进展, 2023, 42(9): 4550-4558. |
[14] | 常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
[15] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |