化工进展 ›› 2025, Vol. 44 ›› Issue (8): 4821-4837.DOI: 10.16085/j.issn.1000-6613.2025-0549

• 过程模拟与仿真前沿与趋势 • 上一篇    

人工智能(AI)在复杂化工过程设计中的应用:现状、挑战与展望

陈嵩嵩1,2,3(), 鲍艾丽3,4, 霍锋3, 侯亚慧3, 崔改静3,5, 张军平3()   

  1. 1.中国科学院成都有机化学研究所, 四川 成都 610041
    2.中国科学院大学, 北京 100049
    3.中国科学院过程工程 研究所介科学与工程全国重点实验室, 北京 100190
    4.渤海大学数学科学学院, 辽宁 锦州 121013
    5.龙子湖新能源实验室,河南 郑州 450046
  • 收稿日期:2025-04-14 修回日期:2025-07-02 出版日期:2025-08-25 发布日期:2025-09-08
  • 通讯作者: 张军平
  • 作者简介:陈嵩嵩(1988—),男,博士研究生,高级工程师,研究方向为化学工程。E-mail: sschen@ipe.ac.cn
  • 基金资助:
    国家重点研发计划(2022YFB3807501);中国科学院战略性科技先导项目“煤炭清洁燃烧与低碳利用”(XDA29030900)

Application of artificial intelligence (AI) in the design of complex chemical engineering processes: Status, challenges and prospects

CHEN Songsong1,2,3(), BAO Aili3,4, HUO Feng3, HOU Yahui3, CUI Gaijing3,5, ZHANG Junping3()   

  1. 1.Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    4.College of Mathematics and Physics, Bohai University, Jinzhou 121013, Liaoning, China
    5.Longzihu New Energy Laboratory, Zhengzhou 450046, Henan, China
  • Received:2025-04-14 Revised:2025-07-02 Online:2025-08-25 Published:2025-09-08
  • Contact: ZHANG Junping

摘要:

基于人工智能的数据驱动复杂化工过程设计新模式发展迅速,成为推动化工行业变革性发展的强大动力,对引领研究范式变革、新技术开发及流程再造具有重要理论指导与实践意义。本文聚焦人工智能在复杂化工过程设计中的研究进展,系统阐述其在分子结构物性预测、热/动力学预测、反应分离路径推荐、工艺过程优化四个核心环节的作用及应用成效,总结分析了在数据收集与清洗、模式识别与趋势预测的表现,深入剖析了当前面临的专业特征数据质量不稳定、模型可解释性不足等挑战,并提出了未来应构建全要素、多层级化工大数据库,持续探究智能算法与化工流程结构信息关联机制,着力提升模型的可解释和架构稳定性,为构建从分子识别到过程设计的智能模型框架、实现化工过程智能设计提供新思路。

关键词: 人工智能, 分子指纹, 热力学性质, 多尺度预测, 优化设计

Abstract:

Artificial intelligence has driven rapid advancements in the design of complex chemical engineering processes with a new data-driven model, serving as a powerful force behind transformative developments in the chemical industry and holding significant implications for the evolution of research paradigms, new technologies, and industrial processes. This paper focuses on the progress of intelligent algorithms in the design of complex chemical processes, and systematically outlines the applications in molecular structure and property prediction, recommendation of reaction and separation pathways, and intelligent optimization of process parameters. The paper also summarizes the performance of intelligent algorithms in big datasets collection and cleaning, pattern recognition, and trend prediction. It provides an in-depth analysis of the challenges faced by intelligent algorithms in chemical process design, including issues related to the lack of professional feature data quality and the insufficient interpretability of models. The paper proposes the practical need for the development of comprehensive multi-level chemical big datasets, the continuous exploration of the relationship between intelligent algorithm structures and chemical process node information, and further improvements in the interpretability and structural stability of intelligent models. These efforts aim to construct a large-scale model framework for intelligent chemical process design, from molecular structure recognition to process design, and ultimately realize intelligent design in the chemical industry.

Key words: artificial intelligence, molecular fingerprint, thermodynamic properties, multiscale prediction, optimal design

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn