化工进展 ›› 2025, Vol. 44 ›› Issue (S1): 441-450.DOI: 10.16085/j.issn.1000-6613.2025-0399
• 资源与环境化工 • 上一篇
马云1,2(
), 崔家豪1,2, 杜杰3, 张帆3, 单巧利3, 牛瑞泽1,2, 白海涛1,2(
)
收稿日期:2025-03-17
修回日期:2025-04-11
出版日期:2025-10-25
发布日期:2025-11-24
通讯作者:
白海涛
作者简介:马云(1975—),女,教授,博士生导师,研究方向为油气田水污染控制技术。E-mail:mayun9401@xsyu.edu.cn。
基金资助:
MA Yun1,2(
), CUI Jiahao1,2, DU Jie3, ZHANG Fan3, SHAN Qiaoli3, NIU Ruize1,2, BAI Haitao1,2(
)
Received:2025-03-17
Revised:2025-04-11
Online:2025-10-25
Published:2025-11-24
Contact:
BAI Haitao
摘要:
油气田压裂返排液含大量难降解污染物,传统物理、化学、生物处理技术各有优缺点,但这些技术存在实际应用条件不适宜、有机物去除不全等问题。高级氧化技术可高效降解污染物,提高后续流程的水质适应性。国内外学者进行了大量研究并取得了较大进展,但鲜少有针对油气田压裂返排液处理的归纳总结。因此,本文在分析油气田压裂返排液成分与污染源的基础上,列举了化学剂氧化、电化学氧化、光催化氧化、催化湿式空气氧化等多种高级氧化技术处理典型油气田压裂返排液的反应条件、效果等相关研究进展并进行了对比分析,提出了一系列该领域的发展需求与方向,诸如通过技术创新与工程化集成、开发低成本的非均相催化剂、结合智能化控制,实现深度氧化-膜分离联用等多技术耦合处理模式,以期为该领域的后续研究与实践提供参考。
中图分类号:
马云, 崔家豪, 杜杰, 张帆, 单巧利, 牛瑞泽, 白海涛. 油气田压裂返排液高级氧化工艺研究进展[J]. 化工进展, 2025, 44(S1): 441-450.
MA Yun, CUI Jiahao, DU Jie, ZHANG Fan, SHAN Qiaoli, NIU Ruize, BAI Haitao. Prospect of research on advanced oxidation processes for fracturing flowback fluids in oil and gas fields[J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 441-450.
| 参数 | 巴肯 | 巴奈特 | 马塞勒斯 | 四川盆地 | 苏里格气田 | 煤层气 |
|---|---|---|---|---|---|---|
| 一般理化参数 | ||||||
| pH | 5.5~8.0 | 6.5~8.0 | 3.9~11.8 | 6.7~8.2 | 6.4~6.6 | 5.6~6.6 |
| 电导率/μs·cm-1 | 259000 | 11300~179000 | 61.9~763000 | 11290~23600 | 5~50 | 70~128 |
| 总有机碳(TOC)/mg·L-1 | 1804~4523 | 6.2~99.1 | 1.2~5804 | 78~1975 | — | 919~1442 |
| COD/mg·L-1 | 20000~79000 | 850~10520 | 18.7~51000 | 358~3477 | 2000~8000 | 1400~6100 |
| TSS/mg·L-1 | 3134 | 36.8~253 | 2~7600 | 70~455 | 54~230 | 35~498 |
| TDS/mg·L-1 | 1755~357527 | 3600~98900 | 2.8~394600 | 6906~28900 | 14000~53000 | 35000~300000 |
| 碱度(以CaCO3计)/mg·L-1 | 2000 | 215~1630 | 6.1~1100 | 600 | 260~15499 | 61~1409 |
| 硬度(以CaCO3计)/mg·L-1 | — | 840~21000 | 196~95000 | 283~1334 | 5158~36084 | 7708~48318 |
| 有机物 | ||||||
| 油和脂/mg·L-1 | — | 5.6~1720 | 3.0~1500 | 17.3 | 50~120 | 4~150 |
| 苯/mg·L-1 | — | 0.049~5.3 | 0.001~1.3 | — | — | — |
| 甲苯/mg·L-1 | — | 0.079~8.1 | 0.000097~2.45 | — | — | — |
| 乙苯/mg·L-1 | — | 0.0022~0.67 | 0~0.235 | — | — | — |
表1 不同地区压裂返排液水质分析[6]
| 参数 | 巴肯 | 巴奈特 | 马塞勒斯 | 四川盆地 | 苏里格气田 | 煤层气 |
|---|---|---|---|---|---|---|
| 一般理化参数 | ||||||
| pH | 5.5~8.0 | 6.5~8.0 | 3.9~11.8 | 6.7~8.2 | 6.4~6.6 | 5.6~6.6 |
| 电导率/μs·cm-1 | 259000 | 11300~179000 | 61.9~763000 | 11290~23600 | 5~50 | 70~128 |
| 总有机碳(TOC)/mg·L-1 | 1804~4523 | 6.2~99.1 | 1.2~5804 | 78~1975 | — | 919~1442 |
| COD/mg·L-1 | 20000~79000 | 850~10520 | 18.7~51000 | 358~3477 | 2000~8000 | 1400~6100 |
| TSS/mg·L-1 | 3134 | 36.8~253 | 2~7600 | 70~455 | 54~230 | 35~498 |
| TDS/mg·L-1 | 1755~357527 | 3600~98900 | 2.8~394600 | 6906~28900 | 14000~53000 | 35000~300000 |
| 碱度(以CaCO3计)/mg·L-1 | 2000 | 215~1630 | 6.1~1100 | 600 | 260~15499 | 61~1409 |
| 硬度(以CaCO3计)/mg·L-1 | — | 840~21000 | 196~95000 | 283~1334 | 5158~36084 | 7708~48318 |
| 有机物 | ||||||
| 油和脂/mg·L-1 | — | 5.6~1720 | 3.0~1500 | 17.3 | 50~120 | 4~150 |
| 苯/mg·L-1 | — | 0.049~5.3 | 0.001~1.3 | — | — | — |
| 甲苯/mg·L-1 | — | 0.079~8.1 | 0.000097~2.45 | — | — | — |
| 乙苯/mg·L-1 | — | 0.0022~0.67 | 0~0.235 | — | — | — |
| 来源 | 方式 | Fenton试剂用量 | 反应条件 | 去除率 | 优点 | 缺点 |
|---|---|---|---|---|---|---|
| 川西某气田[ | Fenton | H2O2浓度为10mL/L Fe2+浓度为9g/L | pH=3.5,反应1h | COD去除率为70.3% | 反应相对简单,对设备要求低 | 反应pH范围较窄,H2O2利用率较低,会产生大量含铁污泥 |
| PotiguarBasin油田[ | P-Fenton | H2O2浓度为10mmol/L Fe2+浓度为0.44mmol/L | 高压400W汞蒸气灯 T=20℃,反应45min | 油去除率为99% | 降解效率高,除油效果好,Fe2+可循环利用 | 对光照条件要求高,设备能耗较大,水样必须透明,增加了预处理难度 |
| 涪陵焦石坝页岩气开采井[ | E-Fenton | H2O2浓度为80mL/h | pH=6~7,极板间距为2.5cm,电流密度135mA/cm2,90min后取上清液进行二次反应60min | COD去除率为97.65% | 电极反应持续产生H2O2,污泥产量少 | 电极材料选择有限且易腐蚀 |
| 黄海模拟压裂返排液[ | S-Fenton | H2O2浓度为80mmol/L Fe2+浓度为5mmol/L | pH=3,超声功率180W,频率20~25kHz,T=39℃,反应30min | COD去除率为81.15% | 传质效果好,加快反应进程;自由基产量大,提高矿化效率 | 超声设备成本较高,能耗较大,对设备稳定性和维护要求高 |
表2 芬顿与类芬顿技术在油气田压裂返排液处理方面的应用现状
| 来源 | 方式 | Fenton试剂用量 | 反应条件 | 去除率 | 优点 | 缺点 |
|---|---|---|---|---|---|---|
| 川西某气田[ | Fenton | H2O2浓度为10mL/L Fe2+浓度为9g/L | pH=3.5,反应1h | COD去除率为70.3% | 反应相对简单,对设备要求低 | 反应pH范围较窄,H2O2利用率较低,会产生大量含铁污泥 |
| PotiguarBasin油田[ | P-Fenton | H2O2浓度为10mmol/L Fe2+浓度为0.44mmol/L | 高压400W汞蒸气灯 T=20℃,反应45min | 油去除率为99% | 降解效率高,除油效果好,Fe2+可循环利用 | 对光照条件要求高,设备能耗较大,水样必须透明,增加了预处理难度 |
| 涪陵焦石坝页岩气开采井[ | E-Fenton | H2O2浓度为80mL/h | pH=6~7,极板间距为2.5cm,电流密度135mA/cm2,90min后取上清液进行二次反应60min | COD去除率为97.65% | 电极反应持续产生H2O2,污泥产量少 | 电极材料选择有限且易腐蚀 |
| 黄海模拟压裂返排液[ | S-Fenton | H2O2浓度为80mmol/L Fe2+浓度为5mmol/L | pH=3,超声功率180W,频率20~25kHz,T=39℃,反应30min | COD去除率为81.15% | 传质效果好,加快反应进程;自由基产量大,提高矿化效率 | 超声设备成本较高,能耗较大,对设备稳定性和维护要求高 |
| 来源 | 联用方式 | 臭氧浓度 | 反应条件 | 去除率 | 优点 | 缺点 |
|---|---|---|---|---|---|---|
| 页岩气[ | 超声波-臭氧 | 42mg/L | pH=2.5,超声(US)功率800W, 1.5h后加入450mg/L MnO2 | COD去除率为68.17% | 空化效应产生局域高温高压,促使臭氧分解产生更多·OH;粉碎作用使臭氧气泡粉碎成微气泡,提高臭氧溶解速度和浓度 | 能量消耗大,工程化难度大 |
| 胜利油田[ | 活性炭三维电极耦合臭氧(3D/O₃) | 80mg/L | 电流1A,气体流速0.5L/min, 活性炭30g,反应3h | COD去除率为78.00% | 活性炭吸附富集污染物;通过电化学氧化技术实现原位再生;多周期运行稳定性好 | 处理高盐度、高有机物浓度返排液时受限 |
| 重庆涪陵某油气田[ | 高压脉冲-臭氧-Fenton | 10mg/L | pH=9,高压脉冲放电电压35kV,放电频率80Hz,脉宽60ns,反应30min;pH=3,H2O2浓度为6mL/L,Fe2+浓度为5mmol/L,反应60min | COD去除率为99.55% | 液电空化效应增大臭氧与返排液的接触面积;碱性条件更有利于产生·OH | 对设备、操作要求高,系统较为复杂 |
| 四川页岩气[ | MFe2O4(M=Cu、Ni、Co、Zn)多相耦合臭氧 | 1440mg/L | 催化剂投加量150mg/L 气体流速0.8L/min | COD去除率为66.7% | 有效提高返排液的可生化性,大幅降低生物毒性;具有较好的回收性能 | 制备过程复杂 |
表3 臭氧氧化联用技术在油气田压裂返排液处理方面的应用现状
| 来源 | 联用方式 | 臭氧浓度 | 反应条件 | 去除率 | 优点 | 缺点 |
|---|---|---|---|---|---|---|
| 页岩气[ | 超声波-臭氧 | 42mg/L | pH=2.5,超声(US)功率800W, 1.5h后加入450mg/L MnO2 | COD去除率为68.17% | 空化效应产生局域高温高压,促使臭氧分解产生更多·OH;粉碎作用使臭氧气泡粉碎成微气泡,提高臭氧溶解速度和浓度 | 能量消耗大,工程化难度大 |
| 胜利油田[ | 活性炭三维电极耦合臭氧(3D/O₃) | 80mg/L | 电流1A,气体流速0.5L/min, 活性炭30g,反应3h | COD去除率为78.00% | 活性炭吸附富集污染物;通过电化学氧化技术实现原位再生;多周期运行稳定性好 | 处理高盐度、高有机物浓度返排液时受限 |
| 重庆涪陵某油气田[ | 高压脉冲-臭氧-Fenton | 10mg/L | pH=9,高压脉冲放电电压35kV,放电频率80Hz,脉宽60ns,反应30min;pH=3,H2O2浓度为6mL/L,Fe2+浓度为5mmol/L,反应60min | COD去除率为99.55% | 液电空化效应增大臭氧与返排液的接触面积;碱性条件更有利于产生·OH | 对设备、操作要求高,系统较为复杂 |
| 四川页岩气[ | MFe2O4(M=Cu、Ni、Co、Zn)多相耦合臭氧 | 1440mg/L | 催化剂投加量150mg/L 气体流速0.8L/min | COD去除率为66.7% | 有效提高返排液的可生化性,大幅降低生物毒性;具有较好的回收性能 | 制备过程复杂 |
| 来源 | 处理方式 | PS用量/mmol·L-1 | 反应条件 | 去除率 | 优点 | 缺点 |
|---|---|---|---|---|---|---|
| 西南某页岩气井[ | Fe0-过硫酸盐(IPS) | 12 | pH=7.7,T=25℃,Fe0浓度为8g/L,反应5min | COD去除率为93.6% | PS可加快铁阳极腐蚀,释放更多Fe2+;存在类Fenton反应以及铁腐蚀产物的混凝沉淀吸附作用 | Fe0腐蚀产物堆积,pH适应范围较窄 |
| 苏里格致密气田[ | 絮凝-铁碳微电解耦合过硫酸盐(ICEPS) | 30 | pH=3,Fe∶C=1∶1(质量比)Fe0浓度为40g/L反应100min | COD去除率为95.71% 油去除率为87.73% TSS去除率为92.4% 色度去除率为97.5% | 对复杂成分的压裂返排液处理效果更好;受温度和水质影响小;反应器设计相对简单,成本较低 | 铁表面钝化,对铁粉和活性炭投加量的精确控制要求高 |
表4 过硫酸盐氧化技术在油气田压裂返排液处理方面的应用现状
| 来源 | 处理方式 | PS用量/mmol·L-1 | 反应条件 | 去除率 | 优点 | 缺点 |
|---|---|---|---|---|---|---|
| 西南某页岩气井[ | Fe0-过硫酸盐(IPS) | 12 | pH=7.7,T=25℃,Fe0浓度为8g/L,反应5min | COD去除率为93.6% | PS可加快铁阳极腐蚀,释放更多Fe2+;存在类Fenton反应以及铁腐蚀产物的混凝沉淀吸附作用 | Fe0腐蚀产物堆积,pH适应范围较窄 |
| 苏里格致密气田[ | 絮凝-铁碳微电解耦合过硫酸盐(ICEPS) | 30 | pH=3,Fe∶C=1∶1(质量比)Fe0浓度为40g/L反应100min | COD去除率为95.71% 油去除率为87.73% TSS去除率为92.4% 色度去除率为97.5% | 对复杂成分的压裂返排液处理效果更好;受温度和水质影响小;反应器设计相对简单,成本较低 | 铁表面钝化,对铁粉和活性炭投加量的精确控制要求高 |
| 来源 | 阳极材料 | 反应条件 | 去除率 | 优点 | 缺点 |
|---|---|---|---|---|---|
| 玛湖油田[ | 镀钌铱钛板 | 单向脉冲电源,电流密度25mA/cm2,极板间距为4cm,电源脉冲频率4000Hz、占空比65%,电解时间90min | COD去除率为92.2%,TSS去除率为91.8%,氨氮去除率为91.4% | 具有优异的电化学稳定性和较高的析氧电位;镀钌铱层能够保护钛基板不被腐蚀,延长寿命 | 钌铱涂层成本较高,长期运行经济性较差;脉冲电源设备复杂,维护难度大 |
| 长庆油田Z293井[ | IrO2-RuO2/Ti | 直接电化学氧化时,极板间距0.5cm,反应电流0.7A,电解时间120min;预处理-电化学氧化时,极板间距0.5cm,反应电流0.7A,电解时间120min;药剂强化-电化学氧化时,极板间距0.5cm,反应电流0.8A,电解时间180min | 直接电化学氧化时,COD去除率为76.1%,TSS去除率为82.5%,氨氮去除率为99.0%,预处理-电化学氧化时,COD去除率为78.0%,TSS去除率为91.8%,氨氮去除率为99.2%,药剂强化-电化学氧化时,COD去除率为87.0%,TSS去除率为93.0%,氨氮去除率为100.0% | 具有优异的电催化活性和稳定的化学性质 | 电极制备工艺复杂,成本较高;对反应条件控制要求严格 |
| 某页岩气区块[ | PbO2/Ti | 电流密度35mA/cm2,极板间距3cm,脉冲频率1500Hz、占空比50% | COD去除率为91.2% | 钛基作为支撑材料,机械强度高;在酸性、高盐环境中耐用 | PbO2易出现析氧反应,电极表面产生钝化膜与杂质沉淀 |
| 新疆油田[ | IrO2-RuO2/Ti | 电流密度8.66mA/cm2,极板间距为2.81cm | COD去除率为100.0% | 结合了钛基板的耐腐蚀性和RuO2、IrO2的高电催化活性;石墨作为阴极材料,具有良好的导电性和化学稳定性,能够承受较高的电流密度 | 复杂的电极制备工艺导致成本上升;对水质适应性有一定限制,需要预处理 |
| 川庆钻探某区块平台[ | 钛基极板 | 反应电流60A,电解时间10min | COD去除率为92.0% TSS去除率为95.0% | 具有良好的耐腐蚀性和较长的使用寿命;减少副反应的发生,提高电解效率 | 在高盐度或强酸碱条件下,电化学性能可能受影响;初期投资成本较高 |
表5 电化学氧化在油气田压裂返排液处理方面的应用现状
| 来源 | 阳极材料 | 反应条件 | 去除率 | 优点 | 缺点 |
|---|---|---|---|---|---|
| 玛湖油田[ | 镀钌铱钛板 | 单向脉冲电源,电流密度25mA/cm2,极板间距为4cm,电源脉冲频率4000Hz、占空比65%,电解时间90min | COD去除率为92.2%,TSS去除率为91.8%,氨氮去除率为91.4% | 具有优异的电化学稳定性和较高的析氧电位;镀钌铱层能够保护钛基板不被腐蚀,延长寿命 | 钌铱涂层成本较高,长期运行经济性较差;脉冲电源设备复杂,维护难度大 |
| 长庆油田Z293井[ | IrO2-RuO2/Ti | 直接电化学氧化时,极板间距0.5cm,反应电流0.7A,电解时间120min;预处理-电化学氧化时,极板间距0.5cm,反应电流0.7A,电解时间120min;药剂强化-电化学氧化时,极板间距0.5cm,反应电流0.8A,电解时间180min | 直接电化学氧化时,COD去除率为76.1%,TSS去除率为82.5%,氨氮去除率为99.0%,预处理-电化学氧化时,COD去除率为78.0%,TSS去除率为91.8%,氨氮去除率为99.2%,药剂强化-电化学氧化时,COD去除率为87.0%,TSS去除率为93.0%,氨氮去除率为100.0% | 具有优异的电催化活性和稳定的化学性质 | 电极制备工艺复杂,成本较高;对反应条件控制要求严格 |
| 某页岩气区块[ | PbO2/Ti | 电流密度35mA/cm2,极板间距3cm,脉冲频率1500Hz、占空比50% | COD去除率为91.2% | 钛基作为支撑材料,机械强度高;在酸性、高盐环境中耐用 | PbO2易出现析氧反应,电极表面产生钝化膜与杂质沉淀 |
| 新疆油田[ | IrO2-RuO2/Ti | 电流密度8.66mA/cm2,极板间距为2.81cm | COD去除率为100.0% | 结合了钛基板的耐腐蚀性和RuO2、IrO2的高电催化活性;石墨作为阴极材料,具有良好的导电性和化学稳定性,能够承受较高的电流密度 | 复杂的电极制备工艺导致成本上升;对水质适应性有一定限制,需要预处理 |
| 川庆钻探某区块平台[ | 钛基极板 | 反应电流60A,电解时间10min | COD去除率为92.0% TSS去除率为95.0% | 具有良好的耐腐蚀性和较长的使用寿命;减少副反应的发生,提高电解效率 | 在高盐度或强酸碱条件下,电化学性能可能受影响;初期投资成本较高 |
| 来源 | 方式 | 催化剂类型 | 反应条件 | 去除率 | 优点 | 缺点 |
|---|---|---|---|---|---|---|
| 中国德阳页岩气井[ | 活性炭负载Cu-Cr双金属催化剂处理 | 5%Cu、1%Cr/AC催化剂10g/L | 氧气分压2.5MPa, T=250℃,反应2h | COD去除率为97%, Cu浸出率为0.09%, Cr浸出率为0.21% | 对高COD的压裂返排液处理效果显著 | 反应条件较为苛刻,对设备要求高 |
| 含酚类的合成压裂返排液(含高浓度NaCl)[ | MnCeO x 催化剂处理 | MnCeO x 催化剂5g/L | 氧气分压0.5MPa, T=110℃,反应2h | 酚类去除率为100%, TOC去除率为94%, 金属浸出不明显 | 反应条件相对温和,生产阶段环境影响小 | 循环去除率下降,稳定性有待提升 |
表6 催化湿式空气氧化技术在油气田压裂返排液处理方面的应用现状
| 来源 | 方式 | 催化剂类型 | 反应条件 | 去除率 | 优点 | 缺点 |
|---|---|---|---|---|---|---|
| 中国德阳页岩气井[ | 活性炭负载Cu-Cr双金属催化剂处理 | 5%Cu、1%Cr/AC催化剂10g/L | 氧气分压2.5MPa, T=250℃,反应2h | COD去除率为97%, Cu浸出率为0.09%, Cr浸出率为0.21% | 对高COD的压裂返排液处理效果显著 | 反应条件较为苛刻,对设备要求高 |
| 含酚类的合成压裂返排液(含高浓度NaCl)[ | MnCeO x 催化剂处理 | MnCeO x 催化剂5g/L | 氧气分压0.5MPa, T=110℃,反应2h | 酚类去除率为100%, TOC去除率为94%, 金属浸出不明显 | 反应条件相对温和,生产阶段环境影响小 | 循环去除率下降,稳定性有待提升 |
| [1] | DHAMORIKAR Rushikesh S, LADE Vikesh G, KEWALRAMANI Pratik V, et al. Review on integrated advanced oxidation processes for water and wastewater treatment[J]. Journal of Industrial and Engineering Chemistry, 2024, 138: 104-122. |
| [2] | FERRER Imma, THURMAN E Michael. Chemical constituents and analytical approaches for hydraulic fracturing waters[J]. Trends in Environmental Analytical Chemistry, 2015, 5: 18-25. |
| [3] | MCDEVITT Bonnie, JUBB Aaron M, VARONKA Matthew S, et al. Dissolved organic matter within oil and gas associated wastewaters from U.S. unconventional petroleum plays: Comparisons and consequences for disposal and reuse[J]. Science of The Total Environment, 2022, 838: 156331. |
| [4] | ZHAO Ying, CHANG Cheng, JI Hongbing, et al. Challenges of petroleum wastewater treatment and development trends of advanced treatment technologies: A review[J]. Journal of Environmental Chemical Engineering, 2024, 12(5): 113767. |
| [5] | MIKLOS David B, REMY Christian, JEKEL Martin, et al. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review[J]. Water Research, 2018, 139: 118-131. |
| [6] | CHANG Haiqing, LI Tong, LIU Baicang, et al. Potential and implemented membrane-based technologies for the treatment and reuse of flowback and produced water from shale gas and oil plays: A review[J]. Desalination, 2019, 455: 34-57. |
| [7] | VEIL J A, PUDER M, ELCOCK D, et al. A white paper describing produced water from production of crude oil, natural gas, and coal bed methane[J]. Natural Gas, 2004. DOI: 10.2172/821666 . |
| [8] | TAO F T, CURTICE Stanley, HOBBS R D, et al. Conversion of oilfield produced water into an irrigation/drinking quality water[C]//SPE/EPA Exploration and Production Environmental Conference. San Antonio, Texas. 1993: SPE 26003-MS. |
| [9] | JIMÉNEZ S, MICÓ M M, ARNALDOS M, et al. State of the art of produced water treatment[J]. Chemosphere, 2018, 192: 186-208. |
| [10] | Daniel ARTHUR J, LANGHUS Bruce G, PATEL Chirag. Technical summary of oil and gas produced water treatment technologies[B]. Tulsa: All Consulting, LLC, 2005. |
| [11] | Ahmadun FAKHRU’L-RAZI, PENDASHTEH Alireza, ABDULLAH Luqman Chuah, et al. Review of technologies for oil and gas produced water treatment[J]. Journal of Hazardous Materials, 2009, 170(2/3): 530-551. |
| [12] | TELLEZ Gilbert T, NIRMALAKHANDAN N, GARDEA-TORRESDEY Jorge L. Performance evaluation of an activated sludge system for removing petroleum hydrocarbons from oilfield produced water[J]. Advances in Environmental Research, 2002, 6(4): 455-470. |
| [13] | TIAN Youliang, JIANG Fengjiao, LIU Nannan, et al. Non-target analysis of organic pollutants in oil-production wastewater treatment stations and surrounding soils: Their profiles, electro-transformation, and environmental risks[J]. Chemosphere, 2024, 368: 143779. |
| [14] | Ehsan MOHAMMAD-PAJOOH, WEICHGREBE Dirk, CUFF Graham, et al. On-site treatment of flowback and produced water from shale gas hydraulic fracturing: A review and economic evaluation[J]. Chemosphere, 2018, 212: 898-914. |
| [15] | MERCHANT Ali Imran, VAKILI Amir Hossein, KOCAMAN Ayhan, et al. New advancement of advanced oxidation processes for the treatment of petroleum wastewater[J]. Desalination and Water Treatment, 2024, 319: 100565. |
| [16] | SHI Yawei, XING Yumei, MA Chang, et al. Degradation of aqueous organic pollutants by dual oxidant advanced oxidation processes: A comprehensive review[J]. Journal of Environmental Chemical Engineering, 2024, 12(6): 114174. |
| [17] | LIU Yiqian, LU Hao, LI Yudong, et al. A review of treatment technologies for produced water in offshore oil and gas fields[J]. Science of The Total Environment, 2021, 775: 145485. |
| [18] | 韩波. 压裂返排液资源化利用与再循环技术研究[J]. 中国石油和化工标准与质量, 2024, 44(12): 193-195. |
| HAN Bo. Study on resource utilization and recycling technology of fracturing flowback fluid[J]. China Petroleum and Chemical Standard and Quality, 2024, 44(12): 193-195. | |
| [19] | 费宇红, 刘雅慈, 李亚松, 等. 中国地下水污染修复方法和技术应用展望[J]. 中国地质, 2022, 49(2): 420-434. |
| FEI Yuhong, LIU Yaci, LI Yasong, et al. Prospect of groundwater pollution remediation methods and technologies in China[J]. Geology in China, 2022, 49(2): 420-434. | |
| [20] | 李兰, 杨旭, 杨德敏. 油气田压裂返排液治理技术研究现状[J]. 环境工程, 2011, 29(4): 54-56, 70. |
| LI Lan, YANG Xu, YANG Demin. Progress in treatment of fracturing fluid recovery from oil/gas field[J]. Environmental Engineering, 2011, 29(4): 54-56, 70. | |
| [21] | 马云, 何顺安, 侯亚龙. 油田废压裂液的危害及其处理技术研究进展[J]. 石油化工应用, 2009, 28(8): 1-3, 14. |
| MA Yun, HE Shunan, HOU Yalong. Hazard and progress in treatment of fracturing wastewaters[J]. Petrochemical Industry Application, 2009, 28(8): 1-3, 14. | |
| [22] | ABOUSNINA Rajab M, NGHIEM Long D, BUNDSCHUH J. Comparison between oily and coal seam gas produced water with respect to quantity, characteristics and treatment technologies: A review[J]. Desalination and Water Treatment, 2015, 54(7): 1793-1808. |
| [23] | ZHANG Huan, GAO Chunyang, ZHANG Hongli, et al. Recent advances on the treatment of oilfield-produced water by advanced oxidation processes: A review[J]. Water Reuse, 2024, 14(2): 190-207. |
| [24] | Samuel QUEIRÓS, MORAIS V, RODRIGUES Carmen S D, et al. Heterogeneous Fenton’s oxidation using Fe/ZSM-5 as catalyst in a continuous stirred tank reactor[J]. Separation and Purification Technology, 2015, 141: 235-245. |
| [25] | MACHADO F, TEIXEIRA A C S C, RUOTOLO L A M. Critical review of Fenton and photo-Fenton wastewater treatment processes over the last two decades[J]. International Journal of Environmental Science and Technology, 2023, 20(12): 13995-14032. |
| [26] | GANIYU Soliu O, ZHOU Minghua, MARTÍNEZ-HUITLE Carlos A. Heterogeneous electro-Fenton and photoelectro-Fenton processes: A critical review of fundamental principles and application for water/wastewater treatment[J]. Applied Catalysis B: Environmental, 2018, 235: 103-129. |
| [27] | WANG Fuhua, SUN Zezhuang, SHI Xian, et al. Mechanism analysis of hydroxypropyl guar gum degradation in fracture flowback fluid by homogeneous sono-Fenton process[J]. Ultrasonics Sonochemistry, 2023, 93: 106298. |
| [28] | 胡志勇, 张太亮, 朱之庆, 等. 混凝-高级氧化组合工艺处理压裂返排液研究[J]. 工业水处理, 2018, 38(7): 81-84, 94. |
| HU Zhiyong, ZHANG Tailiang, ZHU Zhiqing, et al. Research on the treatment of fracturing flow-back fluid by the coagulation-advanced oxidation combined technology[J]. Industrial Water Treatment, 2018, 38(7): 81-84, 94. | |
| [29] | SANTOS DA SILVA Syllos, Osvaldo CHIAVONE-FILHO, DE BARROS NETO Eduardo Lins, et al. Oil removal from produced water by conjugation of flotation and photo-Fenton processes[J]. Journal of Environmental Management, 2015, 147: 257-263. |
| [30] | 刘望福, 李赓, 尹先清, 等. 胍胶压裂返排液COD的电化学降解实验研究[J]. 水处理技术, 2024, 50(9): 26-31. |
| LIU Wangfu, LI Geng, YIN Xianqing, et al. Experimental study on electrochemistry degradation of COD in flowback fluid of guanidine gum fracturing[J]. Technology of Water Treatment, 2024, 50(9): 26-31. | |
| [31] | GUO Yifei, YANG Li, WANG Xiangtao. The application and reaction mechanism of catalytic ozonation in water treatment[J]. Journal of Environmental & Analytical Toxicology, 2012, 2(6): 1000150. |
| [32] | RODRÍGUEZ Eva M, Gracia MÁRQUEZ, LEÓN Elena A, et al. Mechanism considerations for photocatalytic oxidation, ozonation and photocatalytic ozonation of some pharmaceutical compounds in water[J]. Journal of Environmental Management, 2013, 127: 114-124. |
| [33] | LI Xing, BAI Yang, SHI Xian, et al. A review of advanced oxidation process towards organic pollutants and its potential application in fracturing flowback fluid[J]. Environmental Science and Pollution Research International, 2023, 30(16): 45643-45676. |
| [34] | 熊颖, 周厚安, 熊钢. 基于臭氧与超声氧化降低页岩气压裂返排液COD[J]. 化工进展, 2022, 41(4): 1834-1839. |
| XIONG Ying, ZHOU Houan, XIONG Gang. COD reduction treatment of flowback water from shale gas hydraulic fracturing based on oxidation with ozonation and ultrasound[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1834-1839. | |
| [35] | 张一欣, 崔欣欣, 刘淑琴, 等. 三维电极耦合臭氧技术处理油田压裂返排液[J]. 中国环境科学, 2020, 40(5): 2270-2275. |
| ZHANG Yixin, CUI Xinxin, LIU Shuqin, et al. Treatment of oil field fracturing flowback wastewater based on 3D/O3 process[J]. China Environmental Science, 2020, 40(5): 2270-2275. | |
| [36] | 邓磊. 高压脉冲-O3-Fenton联合氧化处理钻井液废水研究[D]. 重庆: 重庆科技学院, 2018. |
| DENG Lei. Study on treatment of drilling fluid wastewater by high pressure pulse-O3-Fenton combined oxidation[D]. Chongqing: Chongqing University of Science & Technology, 2018. | |
| [37] | LIU Pingxin, REN Yueming, MA Wenjie, et al. Degradation of shale gas produced water by magnetic porous MFe2O4 (M=Cu, Ni, Co and Zn) heterogeneous catalyzed ozone[J]. Chemical Engineering Journal, 2018, 345: 98-106. |
| [38] | 李春琴, 邹亚辰, 贾小宁. 过硫酸盐高级氧化技术活化方法及降解机理的研究进展[J]. 化学与生物工程, 2022, 39(6): 1-6, 27. |
| LI Chunqin, ZOU Yachen, JIA Xiaoning. Research progress in activation methods of persulfate and degradation mechanism of organic pollutants by persulfate advanced oxidation process[J]. Chemistry & Bioengineering, 2022, 39(6): 1-6, 27. | |
| [39] | GHANBARI Farshid, MORADI Mahsa. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review[J]. Chemical Engineering Journal, 2017, 310: 41-62. |
| [40] | 米记茹, 田立平, 刘丽丽, 等. 过硫酸盐活化方法的研究进展[J]. 工业水处理, 2020, 40(7): 12-17. |
| MI Jiru, TIAN Liping, LIU Lili, et al. Research progress of persulfate activation methods[J]. Industrial Water Treatment, 2020, 40(7): 12-17. | |
| [41] | ZHANG Heng, LAI Bo. Treatment of hydraulic fracturing flowback fluid by Fe0-persulfate (PS) process[J]. E3S Web of Conferences, 2020, 167: 01005. |
| [42] | LUO Mina, YANG Hanchao, WANG Kuntai, et al. Coupling iron-carbon micro-electrolysis with persulfate advanced oxidation for hydraulic fracturing return fluid treatment[J]. Chemosphere, 2023, 313: 137415. |
| [43] | RIDRUEJO Carlota, CENTELLAS Francesc, CABOT Pere L, et al. Electrochemical Fenton-based treatment of tetracaine in synthetic and urban wastewater using active and non-active anodes[J]. Water Research, 2018, 128: 71-81. |
| [44] | LABIADH Lazhar, BARBUCCI Antonio, CERISOLA Giacomo, et al. Role of anode material on the electrochemical oxidation of methyl orange[J]. Journal of Solid State Electrochemistry, 2015, 19(10): 3177-3183. |
| [45] | HU Zhongzheng, CAI Jingju, SONG Ge, et al. Anodic oxidation of organic pollutants: Anode fabrication, process hybrid and environmental applications[J]. Current Opinion in Electrochemistry, 2021, 26: 100659. |
| [46] | JIANG Yingying, ZHAO Haitao, LIANG Jie, et al. Anodic oxidation for the degradation of organic pollutants: Anode materials, operating conditions and mechanisms. A mini review[J]. Electrochemistry Communications, 2021, 123: 106912. |
| [47] | FU Rui, ZHANG Pengshuang, JIANG Yuanxing, et al. Wastewater treatment by anodic oxidation in electrochemical advanced oxidation process: Advance in mechanism, direct and indirect oxidation detection methods[J]. Chemosphere, 2023, 311: 136993. |
| [48] | 樊玉新, 张海兵, 黄伟强, 等. 电化学工艺处理油田聚合物型压裂返排液[J]. 工业水处理, 2022, 42(10): 139-145. |
| FAN Yuxin, ZHANG Haibing, HUANG Weiqiang, et al. Electrochemical treatment process of polymer fracturing flowback fluid in oilfield[J]. Industrial Water Treatment, 2022, 42(10): 139-145. | |
| [49] | 张钰莲. 油田压裂返排液电化学氧化处理技术研究[D]. 北京: 中国石油大学(北京), 2020. |
| ZHANG Yulian. Study on electrochemical oxidation treatment technology of oilfield fracturing flowback fluid[D]. Beijing: China University of Petroleum (Beijing), 2020. | |
| [50] | 屈梦雄. 电化学处理压裂返排液技术研究[J]. 化工安全与环境, 2023, 36(3): 55-59. |
| QU Mengxiong. Study on electrochemical treatment of fracturing flowback fluid technology[J]. Chemical Safety & Environment, 2023, 36(3): 55-59. | |
| [51] | 郑帅, 孙鑫格, 谢亮, 等. 油田压裂返排液的电化学处理[J]. 环境工程学报, 2023, 17(11): 3543-3553. |
| ZHENG Shuai, SUN Xinge, XIE Liang, et al. Electrochemical treatment of oilfield fracturing flowback fluid[J]. Chinese Journal of Environmental Engineering, 2023, 17(11): 3543-3553. | |
| [52] | 罗臻, 张晓飞, 张华, 等. 页岩气压裂返排液电化学处理现场试验研究[J]. 工业水处理, 2022, 42(10): 118-124. |
| LUO Zhen, ZHANG Xiaofei, ZHANG Hua, et al. Field test research on electrochemical treatment of shale gas fracturing flowback fluid[J]. Industrial Water Treatment, 2022, 42(10): 118-124. | |
| [53] | JING Guolin, LUAN Mingming, CHEN Tingting. Progress of catalytic wet air oxidation technology[J]. Arabian Journal of Chemistry, 2016, 9: S1208-S1213. |
| [54] | NOUSIR S, KEAV S, BARBIER J, et al. Deactivation phenomena during catalytic wet air oxidation (CWAO) of phenol over platinum catalysts supported on ceria and ceria-zirconia mixed oxides[J]. Applied Catalysis B: Environmental, 2008, 84(3/4): 723-731. |
| [55] | LIU Yucheng, WU Donghai, CHEN Mingyan, et al. Wet air oxidation of fracturing flowback fluids over promoted bimetallic Cu-Cr catalyst[J]. Catalysis Communications, 2017, 90: 60-64. |
| [56] | Xiaoxia OU, TOMATIS Marco, PAYNE Billy, et al. Fracking wastewater treatment: Catalytic performance and life cycle environmental impacts of cerium-based mixed oxide catalysts for catalytic wet oxidation of organic compounds[J]. Science of The Total Environment, 2023, 860: 160480. |
| [57] | CHEN Dandan, YI Xiaohong, LING Li, et al. Photocatalytic Cr(Ⅵ) sequestration and photo-Fenton bisphenol A decomposition over white light responsive PANI/MIL-88A(Fe)[J]. Applied Organometallic Chemistry, 2020, 34(9): e5795. |
| [58] | LI Qi, LI Fatang. Recent advances in molecular oxygen activation via photocatalysis and its application in oxidation reactions[J]. Chemical Engineering Journal, 2021, 421: 129915. |
| [59] | SU Biyun, MA Xueqiong, RAN Liangtao, et al. Improving the photodegradation efficiency of POPs in oily sewage: Design and synthesis of g-C3N4-based photocatalysts incorporating a pickering emulsion catalytic strategy[J]. Journal of Environmental Chemical Engineering, 2023, 11(6): 111297. |
| [60] | 张璐姗. h-WO3/m-WO3异相结的制备及其在含油污水处理中的应用[J]. 化学研究与应用, 2023, 35(5): 1041-1049. |
| ZHANG Lushan. Preparation of h-WO3/m-WO3 heterogeneous phase junction and its application in oily wastewater treatment[J]. Chemical Research and Application, 2023, 35(5): 1041-1049. | |
| [61] | 孙博, 吴限, 张金生, 等. 微波法制备银镁共掺氧化锌复合光催化剂及其光催化性能研究[J]. 石油炼制与化工, 2020, 51(6): 47-51. |
| SUN Bo, WU Xian, ZHANG Jinsheng, et al. Microwave-assisted synthesis of silver-magnesium co-doped zinc oxide and its photocatalytic performance[J]. Petroleum Processing and Petrochemicals, 2020, 51(6): 47-51. | |
| [62] | CHEN Lin, XU Pei, ZHANG Yanyan, et al. Au-TiO2 nanoparticles enabled catalytic treatment of oil and gas produced water in slurry and vacuum membrane distillation systems[J]. Journal of Water Process Engineering, 2024, 65: 105745. |
| [63] | DELANKA-PEDIGE Himali M K, YOUNG Robert B, ABUTOKAIKAH Maha T, et al. Non-targeted analysis and toxicity prediction for evaluation of photocatalytic membrane distillation removing organic contaminants from hypersaline oil and gas field-produced water[J]. Journal of Hazardous Materials, 2024, 471: 134436. |
| [64] | 刘琪. 新型g-C3N4- x 光催化剂的设计制备及其深度处理页岩气返排液研究[D]. 武汉: 武汉理工大学, 2019. |
| LIU Qi. Design and preparation of a new type of g-C3N4- x photocatalyst and its application in advanced treatment of shale gas backflow[D]. Wuhan: Wuhan University of Technology, 2019. |
| [1] | 管思颖, 问金月, 焦守政, 郝雨薇, 孙志成. 染料敏化太阳能电池氧化还原电对[J]. 化工进展, 2025, 44(S1): 350-367. |
| [2] | 刘颖, 包成, 张欣欣. 用于氢气提纯的改性载铜活性炭[J]. 化工进展, 2025, 44(S1): 413-421. |
| [3] | 张继达, 袁君, 乔红斌, 王金海, 杨俊辉, 蔡振义, 马中成. 多源瓦斯安全混合蓄热氧化余热利用技术[J]. 化工进展, 2025, 44(S1): 102-111. |
| [4] | 林已杰, 乔鹏, 李心睿, 张宏斌, 王雪芹. TiO2纳米光催化剂的异质结构建策略与应用研究进展[J]. 化工进展, 2025, 44(S1): 159-177. |
| [5] | 王涛, 张雪冰, 张琪, 陈强, 张魁, 门卓武. 还原碳化温度和CO浓度对工业级费托合成沉淀铁催化剂性能的影响[J]. 化工进展, 2025, 44(S1): 178-184. |
| [6] | 赵雨龙, 蔡凯, 于善青. 氧化铝孔结构对催化裂化烃类分子吸附扩散及反应性能的影响[J]. 化工进展, 2025, 44(S1): 213-221. |
| [7] | 张海鹏, 秦珊珊, 王俣萱, 于海彪. 3.0F-Ag x Co催化剂的制备及其催化分解N2O[J]. 化工进展, 2025, 44(9): 4999-5005. |
| [8] | 吴子锋, 王红娟, 王浩帆, 曹永海, 余皓, 彭峰. 电合成碳酸二甲酯的研究进展[J]. 化工进展, 2025, 44(9): 5033-5042. |
| [9] | 程静雯, 陈庆彩, 于博, 刘欢, 徐腾飞, 呼宇坤, 刘思彤. 不同金属掺杂的SnO2基气体传感器对挥发性有机物的检测性能及机制[J]. 化工进展, 2025, 44(9): 5140-5149. |
| [10] | 王睿, 王海澜, 戴若彬, 王志伟. 工业废水深度处理反渗透膜硅污染研究进展:机理、影响因素与控制策略[J]. 化工进展, 2025, 44(9): 5315-5326. |
| [11] | 王文君, 刘瑞鑫, 王军, 张庆磊, 侯立安. 浅析二氧化钛材料可见光降解室内VOCs的研究进展[J]. 化工进展, 2025, 44(9): 5351-5362. |
| [12] | 王晓光, 董青, 郎文丽, 洪翔鑫, 黄振祥, 谭凤玉, 雷以柱, 余子夷. 超低浓度甲烷减排与资源化利用研究进展[J]. 化工进展, 2025, 44(9): 5363-5376. |
| [13] | 郑钦升, 张朝晖, 邢相栋, 折媛, 李嘉雨. CH3COOH/H2O2浸取体系下钢渣钙组分浸出机制[J]. 化工进展, 2025, 44(9): 5471-5478. |
| [14] | 王浩, 李梦琪, 王庆吉, 王凌匀, 罗臻, 宋权威, 李兴春, 何绪文. 石油污染场地地下水异位修复短程处理工艺[J]. 化工进展, 2025, 44(9): 5491-5502. |
| [15] | 刘克峰, 董卫刚, 胡雪生, 刘陶然, 周华群, 时文, 万子岸, 高飞. 推动二氧化碳捕集、输送、应用和封存发展的政策和举措[J]. 化工进展, 2025, 44(9): 4879-4897. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |