化工进展 ›› 2025, Vol. 44 ›› Issue (12): 7034-7044.DOI: 10.16085/j.issn.1000-6613.2024-2045
• 材料科学与技术 • 上一篇
陆雪崟1(
), 康玉堂1(
), 仲兆祥1,2(
), 邢卫红2
收稿日期:2024-12-17
修回日期:2025-03-07
出版日期:2025-12-25
发布日期:2026-01-06
通讯作者:
康玉堂,仲兆祥
作者简介:陆雪崟(1999—),女,硕士研究生,研究方向为多级孔碳纳米纤维催化膜的制备及其空气净化性能。E-mail: luxueyinyx@163.com。
基金资助:
LU Xueyin1(
), KANG Yutang1(
), ZHONG Zhaoxiang1,2(
), XING Weihong2
Received:2024-12-17
Revised:2025-03-07
Online:2025-12-25
Published:2026-01-06
Contact:
KANG Yutang, ZHONG Zhaoxiang
摘要:
室内空气质量对人体健康有着至关重要的影响,细颗粒物和甲醛是室内两种危害性较大的空气污染物。现有的室内空气净化系统多步整合技术存在气体阻力大、能耗较高、工艺流程复杂等问题。负载催化剂的多功能纳米纤维催化膜为室内颗粒物/甲醛污染物的协同去除提供了可能性。本文系统介绍了纳米纤维催化膜在室内颗粒物/甲醛协同净化应用方面的研究进展,首先介绍了室内空气净化技术的发展现状,随后总结了催化剂在静电纺丝纳米纤维膜上的负载方式,其中包括表面负载、内部填充和核壳结构等,最后重点综述了已发表的面向室内颗粒物/甲醛协同净化的纳米纤维催化膜,为纳米纤维催化膜的制备及其在室内多污染物协同净化方面的应用提供思路参考。
中图分类号:
陆雪崟, 康玉堂, 仲兆祥, 邢卫红. 面向室内颗粒物/甲醛净化的纳米纤维催化膜[J]. 化工进展, 2025, 44(12): 7034-7044.
LU Xueyin, KANG Yutang, ZHONG Zhaoxiang, XING Weihong. Nanofiber catalytic membranes for indoor particulate matter/ formaldehyde purification[J]. Chemical Industry and Engineering Progress, 2025, 44(12): 7034-7044.
| 材料体系 | 过滤性能 | 催化性能 | 其他性能 |
|---|---|---|---|
| PA6/DTAC-2[ | PM0.3:99.95% | — | 持久抗菌性 |
| PAN/ZIF-67[ | PM0.3-0.4:83% | — | — |
| PAN/MCNF[ | PM2.5:99% | — | — |
| MNF@MnO2[ | PM0.3:99.47% | HCHO(室温):88.3% | — |
| MCCS-2[ | PM0.3:99.60% PM2.5:99.99% | HCHO(室温):100% | — |
| MnO2/PS[ | PM2.5:99.77% | HCHO(室温):88.2% | — |
| Pt/γ-Al2O3[ | >368nm颗粒:过滤效率较好 | HCHO(室温):100% | — |
| PAN/M. bontioides/Ag-CN/Ag[ | PM0.7-0.8:99.82% | MB:96.37% | 抗大肠杆菌:98.65%±1.49% 抗金黄色葡萄球菌:7.8%±1.27% 抗甲流病毒 |
表1 纳米纤维膜在过滤和催化方面的性能汇总
| 材料体系 | 过滤性能 | 催化性能 | 其他性能 |
|---|---|---|---|
| PA6/DTAC-2[ | PM0.3:99.95% | — | 持久抗菌性 |
| PAN/ZIF-67[ | PM0.3-0.4:83% | — | — |
| PAN/MCNF[ | PM2.5:99% | — | — |
| MNF@MnO2[ | PM0.3:99.47% | HCHO(室温):88.3% | — |
| MCCS-2[ | PM0.3:99.60% PM2.5:99.99% | HCHO(室温):100% | — |
| MnO2/PS[ | PM2.5:99.77% | HCHO(室温):88.2% | — |
| Pt/γ-Al2O3[ | >368nm颗粒:过滤效率较好 | HCHO(室温):100% | — |
| PAN/M. bontioides/Ag-CN/Ag[ | PM0.7-0.8:99.82% | MB:96.37% | 抗大肠杆菌:98.65%±1.49% 抗金黄色葡萄球菌:7.8%±1.27% 抗甲流病毒 |
| [1] | Javier GONZÁLEZ-MARTÍN, KRAAKMAN Norbertus Johannes Richardus, Cristina PÉREZ, et al. A state-of-the-art review on indoor air pollution and strategies for indoor air pollution control[J]. Chemosphere, 2021, 262: 128376. |
| [2] | 胡旌钰, 李茹, 冯燕. 室内空气污染物分类及净化技术研究进展[J]. 当代化工, 2022, 51(2): 418-422. |
| HU Jingyu, LI Ru, FENG Yan. Research progress of indoor air pollutant classification and purification technology[J]. Contemporary Chemical Industry, 2022, 51(2): 418-422. | |
| [3] | ARDEN POPE C 3rd, BURNETT Richard T, THUN Michael J, et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution[J]. JAMA, 2002, 287(9): 1132-1141. |
| [4] | BROOK Robert D, RAJAGOPALAN Sanjay, ARDEN POPE C, et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association[J]. Circulation, 2010, 121(21): 2331-2378. |
| [5] | 孟彩云. 我国甲醛生产现状与技术进展[J]. 化学工程与装备, 2010(9): 160-162. |
| MENG Caiyun. Present situation and technical progress of formaldehyde production in China[J]. Chemical Engineering & Equipment, 2010(9): 160-162. | |
| [6] | SALTHAMMER Tunga, MENTESE Sibel, MARUTZKY Rainer. Formaldehyde in the indoor environment[J]. Chemical Reviews, 2010, 110(4): 2536-2572. |
| [7] | TANG Xiaojiang, BAI Yang, DUONG Anh, et al. Formaldehyde in China: Production, consumption, exposure levels, and health effects[J]. Environment International, 2009, 35(8): 1210-1224. |
| [8] | KIM Sumin, KIM Hyun-Joong. Comparison of standard methods and gas chromatography method in determination of formaldehyde emission from MDF bonded with formaldehyde-based resins[J]. Bioresource Technology, 2005, 96(13): 1457-1464. |
| [9] | ZHANG Luoping, STEINMAUS Craig, EASTMOND David A, et al. Formaldehyde exposure and leukemia: A new meta-analysis and potential mechanisms[J]. Mutation Research/Reviews in Mutation Research, 2009, 681(2/3): 150-168. |
| [10] | 刘俊逸, 张晓昀, 李杰, 等. 室内甲醛污染物高效治理新技术研究进展[J]. 应用化工, 2020, 49(8): 2101-2106. |
| LIU Junyi, ZHANG Xiaoyun, LI Jie, et al. Research on the new technologies of efficient indoor for maldehyde pollution control[J]. Applied Chemical Industry, 2020, 49(8): 2101-2106. | |
| [11] | LOWTHER Scott D, DENG Wei, FANG Zheng, et al. How efficiently can HEPA purifiers remove priority fine and ultrafine particles from indoor air?[J]. Environment International, 2020, 144: 106001. |
| [12] | 叶彩华. 利用活性炭吸附作用去除室内甲醛的效果分析[J]. 现代盐化工, 2022, 49(4): 33-35. |
| YE Caihua. Analysis on the effect of removing indoor formaldehyde by activated carbon adsorption[J]. Modern Salt and Chemical Industry, 2022, 49(4): 33-35. | |
| [13] | WEN Qingbo, LI Caiting, CAI Zhihong, et al. Study on activated carbon derived from sewage sludge for adsorption of gaseous formaldehyde[J]. Bioresource Technology, 2011, 102(2): 942-947. |
| [14] | ZHANG Wanyi, DENG Shiming, ZHANG Shuang, et al. Energy consumption performance optimization of PTFE HEPA filter media during dust loading through compositing them with the efficient filter medium[J]. Sustainable Cities and Society, 2022, 78: 103657. |
| [15] | ZAATARI Marwa, NOVOSELAC Atila, SIEGEL Jeffrey. The relationship between filter pressure drop, indoor air quality, and energy consumption in rooftop HVAC units[J]. Building and Environment, 2014, 73: 151-161. |
| [16] | BELLAT Jean-Pierre, BEZVERKHYY Igor, WEBER Guy, et al. Capture of formaldehyde by adsorption on nanoporous materials[J]. Journal of Hazardous Materials, 2015, 300: 711-717. |
| [17] | NIE Longhui, YU Jiaguo, JARONIEC Mietek, et al. Room-temperature catalytic oxidation of formaldehyde on catalysts[J]. Catalysis Science & Technology, 2016, 6(11): 3649-3669. |
| [18] | YUSUF Abubakar, SNAPE Colin, HE Jun, et al. Advances on transition metal oxides catalysts for formaldehyde oxidation: A review[J]. Catalysis Reviews, 2017, 59(3): 189-233. |
| [19] | ZHANG Jianghao, LI Yaobin, WANG Lian, et al. Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures[J]. Catalysis Science & Technology, 2015, 5(4): 2305-2313. |
| [20] | ROBINSON Andrew J, Alejandra PÉREZ-NAVA, Shan C ALI, et al. Comparative analysis of fiber alignment methods in electrospinning[J]. Matter, 2021, 4(3): 821-844. |
| [21] | LU Tao, CUI Jiaxin, QU Qingli, et al. Multistructured electrospun nanofibers for air filtration: A review[J]. ACS Applied Materials & Interfaces, 2021, 13(20): 23293-23313. |
| [22] | JI Dongxiao, LIN Yagai, GUO Xinyue, et al. Electrospinning of nanofibres[J]. Nature Reviews Methods Primers, 2024, 4: 1. |
| [23] | LI Peng, WANG Chunya, ZHANG Yingying, et al. Air filtration in the free molecular flow regime: A review of high-efficiency particulate air filters based on carbon nanotubes[J]. Small, 2014, 10(22): 4543-4561. |
| [24] | GONG Xiaobao, JIN Chunfeng, LIU Xiaoyan, et al. Scalable fabrication of electrospun true-nanoscale fiber membranes for effective selective separation[J]. Nano Letters, 2023, 23(3): 1044-1051. |
| [25] | XIA Tongling, BIAN Ye, ZHANG Li, et al. Relationship between pressure drop and face velocity for electrospun nanofiber filters[J]. Energy and Buildings, 2018, 158: 987-999. |
| [26] | LIU Chong, HSU Po-Chun, LEE Hyun-Wook, et al. Transparent air filter for high-efficiency PM2.5 capture[J]. Nature Communications, 2015, 6: 6205. |
| [27] | GAO Xue, LI Zhongkun, XUE Jian, et al. Titanium carbide Ti3C2T x (MXene) enhanced PAN nanofiber membrane for air purification[J]. Journal of Membrane Science, 2019, 586: 162-169. |
| [28] | ZHANG Peng, WAN Dongyang, ZHANG Zhenyi, et al. RGO-functionalized polymer nanofibrous membrane with exceptional surface activity and ultra-low airflow resistance for PM2.5 filtration[J]. Environmental Science: Nano, 2018, 5(8): 1813-1820. |
| [29] | FAN Xin, WANG Yu, ZHENG Min, et al. Morphology engineering of protein fabrics for advanced and sustainable filtration[J]. Journal of Materials Chemistry A, 2018, 6(43): 21585-21595. |
| [30] | LI Jing, ZHANG Danzhen, YANG Tingting, et al. Nanofibrous membrane of graphene oxide-in-polyacrylonitrile composite with low filtration resistance for the effective capture of PM2.5 [J]. Journal of Membrane Science, 2018, 551: 85-92. |
| [31] | ZHONG Longgang, WANG Tao, LIU Liyuan, et al. Ultra-fine SiO2 nanofilament-based PMIA: A double network membrane for efficient filtration of PM particles[J]. Separation and Purification Technology, 2018, 202: 357-364. |
| [32] | ZHANG Qijun, LI Qian, YOUNG Timothy M, et al. A novel method for fabricating an electrospun poly(vinyl alcohol)/cellulose nanocrystals composite nanofibrous filter with low air resistance for high-efficiency filtration of particulate matter[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(9): 8706-8714. |
| [33] | LIU Hui, ZHANG Shichao, LIU Lifang, et al. A fluffy dual-network structured nanofiber/net filter enables high-efficiency air filtration[J]. Advanced Functional Materials, 2019, 29(39): 1904108. |
| [34] | YANG Xue, PU Yi, LI Shuxia, et al. Electrospun polymer composite membrane with superior thermal stability and excellent chemical resistance for high-efficiency PM2.5 capture[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 43188-43199. |
| [35] | KIM Min-Woo, AN Seongpil, SEOK Hyunjun, et al. Electrostatic transparent air filter membranes composed of metallized microfibers for particulate removal[J]. ACS Applied Materials & Interfaces, 2019, 11(29): 26323-26332. |
| [36] | LIU Hui, ZHANG Shichao, LIU Lifang, et al. High-performance PM0.3 air filters using self-polarized electret nanofiber/nets[J]. Advanced Functional Materials, 2020, 30(13): 1909554. |
| [37] | LEE Sol, HAN Kyung Seok, KIM Minje, et al. Polybenzimidazole-benzophenone composite nanofiber window air filter with superb UV resistance and high chemical and thermal durability[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 23914-23922. |
| [38] | ZHU Xiao, FENG Shasha, ZHAO Shuaifei, et al. Perfluorinated superhydrophobic and oleophobic SiO2@PTFE nanofiber membrane with hierarchical nanostructures for oily fume purification[J]. Journal of Membrane Science, 2020, 594: 117473. |
| [39] | ZHANG Lu, LI Lingfeng, WANG Lincai, et al. Multilayer electrospun nanofibrous membranes with antibacterial property for air filtration[J]. Applied Surface Science, 2020, 515: 145962. |
| [40] | XIE Fan, WANG Yafang, ZHUO Longhai, et al. Electrospun wrinkled porous polyimide nanofiber-based filter via thermally induced phase separation for efficient high-temperature PMs capture[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 56499-56508. |
| [41] | CHEN Mengyan, JIANG Jiayu, FENG Shasha, et al. Graphene oxide functionalized polyvinylidene fluoride nanofibrous membranes for efficient particulate matter removal[J]. Journal of Membrane Science, 2021, 635: 119463. |
| [42] | CHEN Jiangping, CHEN Sheng-Chieh, WU Xiaoqiong, et al. Multilevel structured TPU/PS/PA-6 composite membrane for high-efficiency airborne particles capture: Preparation, performance evaluation and mechanism insights[J]. Journal of Membrane Science, 2021, 633: 119392. |
| [43] | PAN Zhengyuan, ZHANG Xiaole, SUN Zhaoxia, et al. High fidelity simulation of ultrafine PM filtration by multiscale fibrous media characterized by a combination of X-ray CT and FIB-SEM[J]. Journal of Membrane Science, 2021, 620: 118925. |
| [44] | XU Wanlin, FU Wanlin, MENG Xiangyu, et al. One stone two birds: A sinter-resistant TiO2 nanofiber-based unbroken mat enables PM capture and in situ elimination[J]. Nanoscale, 2021, 13(48): 20564-20575. |
| [45] | LU Xin, CHEN Yingdong, YAN Wentao, et al. Amphiphobic polytetrafluoroethylene membrane with a ring-on-string-like micro/nano structure for air purification[J]. Journal of Membrane Science, 2022, 652: 120476. |
| [46] | NIU Zhuolun, XIAO Can, MO Jinhan, et al. Investigating the influence of metal-organic framework loading on the filtration performance of electrospun nanofiber air filters[J]. ACS Applied Materials & Interfaces, 2022. |
| [47] | ZHANG Shichao, LIU Hui, TANG Ning, et al. Highly efficient, transparent, and multifunctional air filters using self-assembled 2D nanoarchitectured fibrous networks[J]. ACS Nano, 2019, 13(11): 13501-13512. |
| [48] | DENG Yankang, LU Tao, CUI Jiaxin, et al. Morphology engineering processed nanofibrous membranes with secondary structure for high-performance air filtration[J]. Separation and Purification Technology, 2022, 294: 121093. |
| [49] | YUAN Wei, ZHOU Ning, SHI Lei, et al. Structural coloration of colloidal fiber by photonic band gap and resonant Mie scattering[J]. ACS Applied Materials & Interfaces, 2015, 7(25): 14064-14071. |
| [50] | YAN Jianhua, DONG Keqi, ZHANG Yuanyuan, et al. Multifunctional flexible membranes from sponge-like porous carbon nanofibers with high conductivity[J]. Nature Communications, 2019, 10(1): 5584. |
| [51] | LI Dan, XIA Younan. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning[J]. Nano Letters, 2004, 4(5): 933-938. |
| [52] | ALMASIAN A, GIAHI M, CHIZARI FARD Gh, et al. Removal of heavy metal ions by modified PAN/PANI-nylon core-shell nanofibers membrane: Filtration performance, antifouling and regeneration behavior[J]. Chemical Engineering Journal, 2018, 351: 1166-1178. |
| [53] | BAUER Adam Joseph-Podufaly, GRIM Zachary Buchanan, LI Bingbing. Hierarchical polymer blend fibers of high structural regularity prepared by facile solvent vapor annealing treatment[J]. Macromolecular Materials and Engineering, 2018, 303(1): 1700489. |
| [54] | DENG Yankang, LU Tao, ZHANG Xiaoli, et al. Multi-hierarchical nanofiber membrane with typical curved-ribbon structure fabricated by green electrospinning for efficient, breathable and sustainable air filtration[J]. Journal of Membrane Science, 2022, 660: 120857. |
| [55] | LIU Bowen, ZHANG Shichao, WANG Xueli, et al. Efficient and reusable polyamide-56 nanofiber/nets membrane with bimodal structures for air filtration[J]. Journal of Colloid and Interface Science, 2015, 457: 203-211. |
| [56] | 杨琼琼. 多孔材料负载型催化剂催化氧化VOCs的研究进展[J]. 化工设计通讯, 2023, 49(11): 70-77. |
| YANG Qiongqiog. Research progress of supported catalysts based on porous materials for catalytic oxidation of VOCs[J]. Chemical Engineering Design Communications, 2023, 49(11): 70-77. | |
| [57] | XU Feiyan, LE Yao, CHENG Bei, et al. Effect of calcination temperature on formaldehyde oxidation performance of Pt/TiO2 nanofiber composite at room temperature[J]. Applied Surface Science, 2017, 426: 333-341. |
| [58] | QIU Shi, LI Wenkai, PAN Xingchen, et al. PtCu anchored on N,S-codoped electrospinning porous carbon nanofibers for oxygen reduction reaction[J]. International Journal of Hydrogen Energy, 2023, 48(89): 34794-34803. |
| [59] | KANG Sangmo, HWANG Jungho. Fabrication of hollow activated carbon nanofibers (HACNFs) containing manganese oxide catalyst for toluene removal via two-step process of electrospinning and thermal treatment[J]. Chemical Engineering Journal, 2020, 379: 122315. |
| [60] | JIANG Chunli, WANG Hao, WANG Yongqing, et al. Modifying defect states in CeO2 by Fe doping: A strategy for low-temperature catalytic oxidation of toluene with sunlight[J]. Journal of Hazardous Materials, 2020, 390: 122182. |
| [61] | CUI Yahui, JIANG Zhenlin, XU Chenxue, et al. Preparation, filtration, and photocatalytic properties of PAN@g-C3N4 fibrous membranes by electrospinning[J]. RSC Advances, 2021, 11(32): 19579-19586. |
| [62] | HAN Daewoo, STECKL Andrew J. Coaxial electrospinning formation of complex polymer fibers and their applications[J]. ChemPlusChem, 2019, 84(10): 1453-1497. |
| [63] | MCCANN Jesse T, MARQUEZ Manuel, XIA Younan. Melt coaxial electrospinning: A versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers[J]. Nano Letters, 2006, 6(12): 2868-2872. |
| [64] | PANT Bishweshwar, PARK Mira, PARK Soo-Jin. Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: A review[J]. Pharmaceutics, 2019, 11(7): 305. |
| [65] | JIANG Hongliang, HU Yingqian, ZHAO Pengcheng, et al. Modulation of protein release from biodegradable core-shell structured fibers prepared by coaxial electrospinning[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2006, 79B(1): 50-57. |
| [66] | YU Dengguang, WEI Chian, WANG Xia, et al. Linear drug release membrane prepared by a modified coaxial electrospinning process[J]. Journal of Membrane Science, 2013, 428: 150-156. |
| [67] | ZUO Fenglei, ZHANG Shichao, LIU Hui, et al. Free-standing polyurethane nanofiber/nets air filters for effective PM capture[J]. Small, 2017, 13(46): 1702139. |
| [68] | YANG Yuchen, LI Xiangshun, ZHOU Zhiyong, et al. Ultrathin, ultralight dual-scale fibrous networks with high-infrared transmittance for high-performance, comfortable and sustainable PM0.3 filter[J]. Nature Communications, 2024, 15(1): 1586. |
| [69] | Mihailo MIRKOVIĆ, STOJANOVIĆ Dušica B, Daniel MIJAILOVIĆ, et al. Electrospun polyacrylonitrile fibers incorporated with microporous carbon for improved airborne PM2.5 filtration[J]. Materials Chemistry and Physics, 2022, 285: 126103. |
| [70] | ZHANG Xianhua, LIANG Yuan, LIU Fan, et al. MnO2-loaded flexible mullite nanofiber filter materials for removing particulate matter and formaldehyde from indoor air[J]. Separation and Purification Technology, 2024, 343: 127135. |
| [71] | ZHOU Huixian, ZENG Yiqing, Zexian LOW, et al. Core-dual-shell structure MnO2@Co-C@SiO2 nanofiber membrane for efficient indoor air cleaning[J]. Journal of Membrane Science, 2023, 677: 121644. |
| [72] | HU Min, YIN Linghui, ZHOU Huixian, et al. Manganese dioxide-filled hierarchical porous nanofiber membrane for indoor air cleaning at room temperature[J]. Journal of Membrane Science, 2020, 605: 118094. |
| [73] | XIN Sitian, ZHU Silong, ZHENG Jianfei, et al. One-step fabrication of electrospun flexible and hierarchically porous Pt/γ-Al2O3 nanofiber membranes for HCHO and particulate removal[J]. New Journal of Chemistry, 2022, 46(36): 17429-17437. |
| [74] | CHEN Pinhong, YANG Zhi, Zhuoxian MAI, et al. Electrospun nanofibrous membrane with antibacterial and antiviral properties decorated with Myoporum bontioides extract and silver-doped carbon nitride nanoparticles for medical masks application[J]. Separation and Purification Technology, 2022, 298: 121565. |
| [1] | 赵雨龙, 蔡凯, 于善青. 氧化铝孔结构对催化裂化烃类分子吸附扩散及反应性能的影响[J]. 化工进展, 2025, 44(S1): 213-221. |
| [2] | 李军良, 李悦, 孙道来. Cu/SiO2-Al2O3催化1,2-丁二醇加氢脱氧制备1-丁醇[J]. 化工进展, 2025, 44(S1): 222-231. |
| [3] | 刘超, 丁承奥, 吴宝顺, 雷欣宇, 王光应, 余正伟. TiO2载体粒度对RuO x -V2O5-WO3/TiO2催化剂脱硝及抗水硫中毒性能的影响[J]. 化工进展, 2025, 44(S1): 232-242. |
| [4] | 张涵林, 岳学海, 刘俊希, 殷逢俊. 钌锶铱电沉积构筑高稳定性析氧反应电催化剂[J]. 化工进展, 2025, 44(S1): 243-251. |
| [5] | 王露, 何阳东, 李雅欣, 范锐, 陈仕锦, 张杰. 高性能聚合物膜用于He/CH4和He/N2分离的结构设计与性能优化[J]. 化工进展, 2025, 44(S1): 261-276. |
| [6] | 程启文, 李清华, 王浩帆, 曹永海, 王红娟, 余皓. 油胺改性碳包覆二硫化钼复合材料的制备及其摩擦学性能分析[J]. 化工进展, 2025, 44(S1): 400-412. |
| [7] | 谭芳芳, 程安, 刘佳, 王渊博, 王军. 可见光驱动对甲氧基苯甲醛一步合成对甲氧基苯甲酸甲酯新方法[J]. 化工进展, 2025, 44(S1): 434-440. |
| [8] | 王伟豪, 吴贤豪, 周瑛, 冯向东, 胡达清, 卢晗锋. 水相耦合高级氧化法治理VOCs技术:机理、应用与挑战[J]. 化工进展, 2025, 44(S1): 478-491. |
| [9] | 朱颖, 李伊琳, 刘建国, 曹英楠, 霍耀强, 刘伟, 王娟, 李宜庭, 张希美, 李彬. 焦化废水膜处理工艺中膜污染组成及机制[J]. 化工进展, 2025, 44(S1): 518-527. |
| [10] | 刘哲, 周顺利, 李永祥, 张成喜, 刘宜鹏. 烷基萘合成催化剂研究进展[J]. 化工进展, 2025, 44(S1): 144-158. |
| [11] | 林已杰, 乔鹏, 李心睿, 张宏斌, 王雪芹. TiO2纳米光催化剂的异质结构建策略与应用研究进展[J]. 化工进展, 2025, 44(S1): 159-177. |
| [12] | 王涛, 张雪冰, 张琪, 陈强, 张魁, 门卓武. 还原碳化温度和CO浓度对工业级费托合成沉淀铁催化剂性能的影响[J]. 化工进展, 2025, 44(S1): 178-184. |
| [13] | 包新德, 刘必烨, 黄仁伟, 洪宇豪, 关鑫, 林金国. 生物质基@CuNiOS复合催化剂的制备及其在有机染料还原中的应用[J]. 化工进展, 2025, 44(S1): 185-196. |
| [14] | 马晓彪, 刘晗, 王伟欢, 苗培培, 季莹辉, 陈博阳, 彭晓伟, 许强, 靳凤英, 马明超, 王银斌, 郭春垒. 酸和磷复合改性对ZSM-5分子筛催化裂解性能的影响[J]. 化工进展, 2025, 44(S1): 197-204. |
| [15] | 赵思阳, 李陈冉, 刘洋. 副产C4预积炭调控MTO再生催化剂双烯选择性的工艺优化[J]. 化工进展, 2025, 44(S1): 205-212. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |