化工进展 ›› 2025, Vol. 44 ›› Issue (S1): 478-491.DOI: 10.16085/j.issn.1000-6613.2025-0265
• 资源与环境化工 • 上一篇
王伟豪1,2(
), 吴贤豪1, 周瑛2, 冯向东1, 胡达清1(
), 卢晗锋2(
)
收稿日期:2025-02-24
修回日期:2025-06-09
出版日期:2025-10-25
发布日期:2025-11-24
通讯作者:
胡达清,卢晗锋
作者简介:王伟豪(1999—),男,硕士研究生,研究方向为大气污染控制技术。E-mail:1553412939@qq.com。
基金资助:
WANG Weihao1,2(
), WU Xianhao1, ZHOU Ying2, FENG Xiangdong1, HU Daqing1(
), LU Hanfeng2(
)
Received:2025-02-24
Revised:2025-06-09
Online:2025-10-25
Published:2025-11-24
Contact:
HU Daqing, LU Hanfeng
摘要:
传统气固相高温催化氧化法治理工业挥发性有机废气(VOCs)由于其安全性差、能耗过高、催化剂易失活而受到较大的应用阻碍。水相耦合高级氧化技术(AOPs)作为一种近些年来新兴的低温VOCs治理手段,因其具有安全性高、条件温和、成本低、适用性广等优点而广受关注。本文综述了一些常见高级氧化技术治理VOCs(如湿式-光催化氧化、Fenton反应、过硫酸盐氧化以及湿式-催化臭氧氧化)等方面的研究成果,系统分析了反应和吸收机理,以及反应条件在高级氧化技术净化中的影响,同时分析对比了各类AOPs技术的优缺点,发现该技术在未来工业化应用中的关键问题主要为氧化剂消耗、反应不连续、高效催化剂的研发等,通过本文期待能够对解决这些问题提供帮助。
中图分类号:
王伟豪, 吴贤豪, 周瑛, 冯向东, 胡达清, 卢晗锋. 水相耦合高级氧化法治理VOCs技术:机理、应用与挑战[J]. 化工进展, 2025, 44(S1): 478-491.
WANG Weihao, WU Xianhao, ZHOU Ying, FENG Xiangdong, HU Daqing, LU Hanfeng. Aqueous coupled advanced oxidation for VOCs treatment: Mechanism, applications and challenges[J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 478-491.
| AOPs种类 | 体系 | 污染物 | 催化剂 | ROS | 去除率 | 参考文献 |
|---|---|---|---|---|---|---|
| 湿式-光催化氧化 | 真空紫外光(VUV)-H2O | 甲苯 | — | ·OH | 83% | [ |
| F/TiO2-WPCO | 甲苯 | F/TiO2 | ·OH | 约80% | [ | |
| TiO2-WPCO | 甲苯 | TiO2(P25) | ·OH | 约60% | [ | |
| TiO2/g-C3N4-WPCO | 异丙醇 | TiO2/g-C3N4 | ·OH | 60% | [ | |
| Fenton反应 | Fenton | 甲苯 | Fe2+ | ·OH | 81% | [ |
| Fenton | 苯 | Fe2+ | ·OH | 85% | [ | |
| UV-Fenton | 苯、乙苯、甲苯、二甲苯混合物(BETX) | Fe2+ | ·OH | 84%~97% | [ | |
| UV-Fenton | 甲苯 | Fe2+ | ·OH | 92% | [ | |
| UV-Fenton | 甲苯 | Fe2+ | ·OH | >90% | [ | |
| UV-Fenton | 甲苯 | Fe2+ | ·OH | 85.31% | [ | |
| UV-Fenton | 甲苯 | Fe2+ | ·OH | 80% | [ | |
| FeS2-Fenton | 甲苯 | FeS2 | ·OH | 95% | [ | |
| Fe/ZSM-5-Fenton | 甲苯 | Fe/ZSM-5 | ·OH | >85% | [ | |
| Fe3O4@C-Fenton | 正辛烷 | Fe3O4@C | ·OH | 84% | [ | |
| UV-AC-Fenton | 正辛烷 | AC、Fe2+ | ·OH | >80% | [ | |
| SCFeK-SiC/Fenton | 甲硫醇 | SCFeK-SiC | ·OH | 约100% | [ | |
| FeOCl/AC-Fenton | 二氯乙烯 | FeOCl/AC | ·OH | 86.5% | [ | |
| 过硫酸盐氧化 | UV-PMS | 甲苯、乙酸乙酯 | — | ·SO | 98%、96% | [ |
| UV-PDS | 氯苯 | — | ·SO | 97% | [ | |
| UV-PDS-KMnO4 | 甲苯 | MnO x | ·SO | >90% | [ | |
| Fe2+/MoS2-PMS | 氯苯、甲苯、苯乙烯 | Fe2+、MoS2 | ·SO | 83%、84%、97% | [ | |
| Co3O4/AC-PMS | 甲苯 | Co3O4/AC | ·SO | >90% | [ | |
| MnCo x /Kaolin-PMS | 甲苯 | MnCo x /Kaolin | ·SO | 98% | [ | |
| CoS2/AC-PMS | 氯苯、甲苯、苯乙烯 | CoS2/AC | ·SO | >90% | [ | |
| Co/NCNT-PMS | 氯苯 | Co/NCNT | ·SO | >90% | [ | |
| Co/SBA-15-PMS | 甲苯 | Co/SBA-15 | ·SO | 95% | [ | |
| Co/CN-PMS | 甲苯 | Co/CN | ·SO | >90% | [ | |
| MWCNTs-PMS | 苯乙烯 | 多壁碳纳米管(MWCNTs) | ·SO | 98% | [ | |
| 湿式-催化臭氧化 | WMO | 甲苯 | — | ·OH | 97.08% | [ |
| H2O2-O3 | 三氯乙烯 | — | ·OH | 94% | [ | |
| Ag/MnO2-WCO | 甲硫醇 | Ag/MnO2 | ·OH、·O | 97% | [ | |
| MnO x /AC-WCO | 甲苯 | MnO x /AC | ·OH、·O | 71.82% | [ |
表1 水相耦合AOPs技术净化VOCs汇总
| AOPs种类 | 体系 | 污染物 | 催化剂 | ROS | 去除率 | 参考文献 |
|---|---|---|---|---|---|---|
| 湿式-光催化氧化 | 真空紫外光(VUV)-H2O | 甲苯 | — | ·OH | 83% | [ |
| F/TiO2-WPCO | 甲苯 | F/TiO2 | ·OH | 约80% | [ | |
| TiO2-WPCO | 甲苯 | TiO2(P25) | ·OH | 约60% | [ | |
| TiO2/g-C3N4-WPCO | 异丙醇 | TiO2/g-C3N4 | ·OH | 60% | [ | |
| Fenton反应 | Fenton | 甲苯 | Fe2+ | ·OH | 81% | [ |
| Fenton | 苯 | Fe2+ | ·OH | 85% | [ | |
| UV-Fenton | 苯、乙苯、甲苯、二甲苯混合物(BETX) | Fe2+ | ·OH | 84%~97% | [ | |
| UV-Fenton | 甲苯 | Fe2+ | ·OH | 92% | [ | |
| UV-Fenton | 甲苯 | Fe2+ | ·OH | >90% | [ | |
| UV-Fenton | 甲苯 | Fe2+ | ·OH | 85.31% | [ | |
| UV-Fenton | 甲苯 | Fe2+ | ·OH | 80% | [ | |
| FeS2-Fenton | 甲苯 | FeS2 | ·OH | 95% | [ | |
| Fe/ZSM-5-Fenton | 甲苯 | Fe/ZSM-5 | ·OH | >85% | [ | |
| Fe3O4@C-Fenton | 正辛烷 | Fe3O4@C | ·OH | 84% | [ | |
| UV-AC-Fenton | 正辛烷 | AC、Fe2+ | ·OH | >80% | [ | |
| SCFeK-SiC/Fenton | 甲硫醇 | SCFeK-SiC | ·OH | 约100% | [ | |
| FeOCl/AC-Fenton | 二氯乙烯 | FeOCl/AC | ·OH | 86.5% | [ | |
| 过硫酸盐氧化 | UV-PMS | 甲苯、乙酸乙酯 | — | ·SO | 98%、96% | [ |
| UV-PDS | 氯苯 | — | ·SO | 97% | [ | |
| UV-PDS-KMnO4 | 甲苯 | MnO x | ·SO | >90% | [ | |
| Fe2+/MoS2-PMS | 氯苯、甲苯、苯乙烯 | Fe2+、MoS2 | ·SO | 83%、84%、97% | [ | |
| Co3O4/AC-PMS | 甲苯 | Co3O4/AC | ·SO | >90% | [ | |
| MnCo x /Kaolin-PMS | 甲苯 | MnCo x /Kaolin | ·SO | 98% | [ | |
| CoS2/AC-PMS | 氯苯、甲苯、苯乙烯 | CoS2/AC | ·SO | >90% | [ | |
| Co/NCNT-PMS | 氯苯 | Co/NCNT | ·SO | >90% | [ | |
| Co/SBA-15-PMS | 甲苯 | Co/SBA-15 | ·SO | 95% | [ | |
| Co/CN-PMS | 甲苯 | Co/CN | ·SO | >90% | [ | |
| MWCNTs-PMS | 苯乙烯 | 多壁碳纳米管(MWCNTs) | ·SO | 98% | [ | |
| 湿式-催化臭氧化 | WMO | 甲苯 | — | ·OH | 97.08% | [ |
| H2O2-O3 | 三氯乙烯 | — | ·OH | 94% | [ | |
| Ag/MnO2-WCO | 甲硫醇 | Ag/MnO2 | ·OH、·O | 97% | [ | |
| MnO x /AC-WCO | 甲苯 | MnO x /AC | ·OH、·O | 71.82% | [ |
| [1] | 栾志强, 王喜芹, 刘媛. 《重点行业挥发性有机物综合治理方案》解读——末端治理技术[J]. 中国环保产业, 2019(11): 7-9. |
| LUAN Zhiqiang, WANG Xiqin, LIU Yuan. Unscramble“Comprehensive control scheme on volatile organics in key industries”—End control technology[J]. Comprehensive Control Scheme on Volatile Organics in Key Industries, 2019(11): 7-9. | |
| [2] | 任鹏锟, 仲兆平, 张小霓, 等. 污泥-木屑基活性炭的制备及其对苯系VOCs的吸附性能[J]. 化工进展, 2025, 44(6): 3031-3040. |
| REN Pengkun, ZHONG Zhaoping, ZHANG Xiaoni, et al. Preparation of activated carbon based on sludge and sawdust and its adsorption performance for benzene series VOCs[J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3031-3040. | |
| [3] | 龙文辉. 浅析工业源VOCs气体污染治理工艺[J]. 清洗世界, 2024, 40(12): 133-135. |
| LONG Wenhui. Analysis on the treatment technology of VOCs gas pollution from industrial sources[J]. Cleaning World, 2024, 40(12): 133-135. | |
| [4] | 施高骏, 贾洪柏, 刘军, 等. 低浓度工业源VOCs处理技术及其应用[J]. 山东化工, 2025, 54(2): 248-250. |
| SHI Gaojun, JIA Hongbai, LIU Jun, et al. Low concentration industrial VOCs processing technology and its application[J]. Shandong Chemical Industry, 2025, 54(2): 248-250. | |
| [5] | 朱智慧. 喷漆废气中漆雾处理及有机废气净化技术分析[J]. 科学技术创新, 2024(14): 199-202. |
| ZHU Zhihui. Analysis of paint mist treatment and organic exhaust gas purification technology in spray paint exhaust gas[J]. Scientific and Technological Innovation, 2024(14): 199-202. | |
| [6] | 王文君, 刘瑞鑫, 王军, 等. 浅析二氧化钛材料可见光降解室内VOCs的研究进展[J]. 化工进展, 2024: 1-17. (2024-11-21). . |
| WANG Wenjun, LIU Ruixin, WANG Jun, et al. Research progress of visible light degradation of indoor VOCs by titanium dioxide materials[J]. Chemical Industry and Engineering Progress, 2024: 1-17. (2024-11-21). . | |
| [7] | 刘佩希. 臭氧耦合过渡金属催化剂脱除多种VOCs和NO x 的试验与机理研究[D]. 杭州: 浙江大学, 2024. |
| LIU Peixi. Experimental and mechanism study on removal of VOCs and NO x by ozone-coupled transition metal catalyst[D]. Hangzhou: Zhejiang University, 2024. | |
| [8] | 彭钎, 董芳, 韩维亮, 等. 低碳烷烃类VOCs催化燃烧耐SO2催化剂研究现状及进展[J]. 分子催化(中英文), 2025, 39(2): 188-198. |
| PENG Qian, DONG Fang, HAN Weiliang, et al. Current research status and progress of SO2 resistant catalysts for catalytic combustion of low-carbon alkane VOCs[J]. Journal of Molecular Catalysis (China), 2025, 39(2): 188-198. | |
| [9] | 邵杰. 复合微生物菌剂构建及其在石化VOCs废气净化中的应用研究[D]. 舟山: 浙江海洋大学, 2022. |
| SHAO Jie. Construction of compound microbial inoculum and its application in purification of petrochemical VOCs waste gas[D]. Zhoushan: Zhejiang Ocean University, 2022. | |
| [10] | 白佳慧. 低温等离子体降解混合VOCs的研究[D]. 上海: 东华大学, 2024. |
| BAI Jiahui. Study on degradation of mixed VOCs by low temperature plasma[D]. Shanghai: Donghua University, 2024. | |
| [11] | 金丽丽, 王文洁, 周瑛, 等. TiO2/g-C3N4水吸收耦合光催化降解异丙醇废气[J]. 能源环境保护, 2023, 37(6): 147-155. |
| JIN Lili, WANG Wenjie, ZHOU Ying, et al. TiO2/g-C3N4 water absorption coupled photocatalytic degradation of isopropanol exhaust gas[J]. Energy Environmental Protection, 2023, 37(6): 147-155. | |
| [12] | 吴敏艳, 周瑛, 王文洁, 等. 生物柴油吸收VOCs的特性及热力学[J]. 中国环境科学, 2021, 41(7): 3153-3160. |
| WU Minyan, ZHOU Ying, WANG Wenjie, et al. Absorption and thermodynamics of VOCs by biodiesel[J]. China Environmental Science, 2021, 41(7): 3153-3160. | |
| [13] | 应天彪, 张瑞娜, 刘华彦, 等. 离子液体体系吸收分离芳香族挥发性有机化合物的研究进展[J]. 石油化工, 2022, 51(12): 1465-1476. |
| YING Tianbiao, ZHANG Ruina, LIU Huayan, et al. Ionic liquid system for absorption and separation of aromatic volatile organic compounds[J]. Petrochemical Technology, 2022, 51(12): 1465-1476. | |
| [14] | 何璐红, 刘华彦, 卢晗锋, 等. 复配表面活性剂水溶液处理甲苯气体的研究[J]. 中国环境科学, 2013, 33(7): 1231-1236. |
| HE Luhong, LIU Huayan, LU Hanfeng, et al. Removal of toluene by mixed surfactant aqueous solutions[J]. China Environmental Science, 2013, 33(7): 1231-1236. | |
| [15] | FU Lipei, ZUO Jiang, LIAO Kaili, et al. Preparation of adsorption resin and itas application in VOCs adsorption[J]. Journal of Polymer Research, 2023, 30(5): 167. |
| [16] | WEI Qing, YANG Jie, TIAN Changan, et al. Research on the progress of VOCs adsorption by biomass nanocomposites[J]. Journal of Physics: Conference Series, 2022, 2194(1): 012023. |
| [17] | KRUGLY Edvinas, PITAK Oleh, CIUZAS Darius, et al. Removal of VOCs from wood processing ventilation air by advanced oxidation gas-to-particle prototype system[J]. Process Safety and Environmental Protection, 2022, 161: 520-527. |
| [18] | EPELLE Emmanuel I, MACFARLANE Andrew, CUSACK Michael, et al. Ozone application in different industries: A review of recent developments[J]. Chemical Engineering Journal, 2023, 454: 140188. |
| [19] | 朱秋莲, 王秉好, 卢晗锋. TiO2@PT光催化剂的构建及其光催化降解甲苯性能[J]. 中国环境科学, 2024, 44(1): 65-71. |
| ZHU Qiulian, WANG Binghao, LU Hanfeng. Construction of TiO2@PT photocatalyst and its study on photocatalytic degradation of toluene[J]. China Environmental Science, 2024, 44(1): 65-71. | |
| [20] | AUTIN Olivier, HART Julie, JARVIS Peter, et al. Comparison of UV/H2O2 and UV/TiO2 for the degradation of metaldehyde: Kinetics and the impact of background organics[J]. Water Research, 2012, 46(17): 5655-5662. |
| [21] | WANG Cong, ZHAO Jingyu, CHEN Congmei, et al. Catalytic activation of PS/PMS over Fe-Co bimetallic oxides for phenol oxidation under alkaline conditions[J]. Applied Surface Science, 2021, 562: 150134. |
| [22] | ZHOU Bing, KE Quanli, CHEN Kai, et al. Adsorption and catalytic ozonation of toluene on Mn/ZSM-5 at low temperature[J]. Applied Catalysis A: General, 2023, 657: 119146. |
| [23] | GOSSEN Mira, GOVINDARAJAN Dhivakar, JOHN Anju Anna, et al. EfectroH2O: Development and evaluation of a novel treatment technology for high-brine industrial wastewater[J]. Science of The Total Environment, 2023, 883: 163479. |
| [24] | XIE Ruijie, LEI Dongxue, ZHAN Yujie, et al. Efficient photocatalytic oxidation of gaseous toluene over F-doped TiO2 in a wet scrubbing process[J]. Chemical Engineering Journal, 2020, 386: 121025. |
| [25] | MONTECCHIO Francesco, BÄBLER Matthäus U U, ENGVALL Klas. Development of an irradiation and kinetic model for UV processes in volatile organic compounds abatement applications[J]. Chemical Engineering Journal, 2018, 348: 569-582. |
| [26] | XU Zhenmin, CHAI Wei, CAO Jiachen, et al. Controlling the gas-water interface to enhance photocatalytic degradation of volatile organic compounds[J]. ACS ES&T Engineering, 2021, 1(7): 1140-1148. |
| [27] | ZHAN Yujie, JI Jian, HUANG Haibao, et al. A facile VUV/H2O system without auxiliary substances for efficient degradation of gaseous toluene[J]. Chemical Engineering Journal, 2018, 334: 1422-1429. |
| [28] | LIU Biyuan, ZHAN Yujie, XIE Ruijie, et al. Efficient photocatalytic oxidation of gaseous toluene in a bubbling reactor of water[J]. Chemosphere, 2019, 233: 754-761. |
| [29] | SEKIGUCHI Kazuhiko, MORINAGA Wakana, SAKAMOTO Kazuhiko, et al. Degradation of VOC gases in liquid phase by photocatalysis at the bubble interface[J]. Applied Catalysis B: Environmental, 2010, 97(1/2): 190-197. |
| [30] | SHAYEGAN Zahra, LEE Chang-Seo, HAGHIGHAT Fariborz. TiO2 photocatalyst for removal of volatile organic compounds in gas phase—A review[J]. Chemical Engineering Journal, 2018, 334: 2408-2439. |
| [31] | BALCIOGLU ILHAN Esra Billur, ILHAN, Fatih, KURT Ugur, et al. An optimization study of advanced Fenton oxidation methods (UV/Fenton-MW/Fenton) for treatment of real epoxy paint wastewater[J]. Water, 2024, 16(4): 605. |
| [32] | DU Zhaohui, YUAN Ying, ZHOU Changsong, et al. Gaseous toluene heterogeneous oxidative degradation by iron-based hypercrosslinked polymeric resin LXQ-10[J]. Fuel, 2023, 344: 128080. |
| [33] | LIMA Vanessa N, RODRIGUES Carmen S D, BORGES Ricardo A C, et al. Gaseous and liquid effluents treatment in bubble column reactors by advanced oxidation processes: A review[J]. Critical Reviews in Environmental Science and Technology, 2018, 48(16/17/18): 949-996. |
| [34] | ZHAN Fuman, LI Caiting, ZENG Guangming, et al. Experimental study on oxidation of elemental mercury by UV/Fenton system[J]. Chemical Engineering Journal, 2013, 232: 81-88. |
| [35] | LIMA Vanessa N, RODRIGUES Carmen S D, MADEIRA Luís M. Simultaneous treatment of toluene-containing gas waste and industrial wastewater by the Fenton process[J]. Science of The Total Environment, 2020, 749: 141497. |
| [36] | LIMA Vanessa N, RODRIGUES Carmen S D, MADEIRA Luís M. Sequential gas-liquid treatment for gaseous toluene degradation by Fenton’s oxidation in bubble reactors[J]. Journal of Environmental Chemical Engineering, 2020, 8(3): 103796. |
| [37] | LIU Gaoyuan, HUANG Haibao, XIE Ruijie, et al. Enhanced degradation of gaseous benzene by a Fenton reaction[J]. RSC Advances, 2017, 7(1): 71-76. |
| [38] | LIU Yangxian, SHI Shuo, WANG Yan. Removal of pollutants from gas streams using Fenton (-like)-based oxidation systems: A review[J]. Journal of Hazardous Materials, 2021, 416: 125927. |
| [39] | ORAL Ozlem, Şevki ARSLAN, MERCAN DOGAN Nazime, et al. Methylene blue treatment with zero-valent iron/pyrite/H2O2 system under static and continuous flow conditions: Reaction mechanism and toxicity evaluation[J]. Journal of Industrial and Engineering Chemistry, 2024, 139: 149-161. |
| [40] | ZHENG Chunming, CHENG Xiangzhi, CHEN Peipei, et al. Ordered mesoporous hematite promoted by magnesium selective leaching as a highly efficient heterogeneous Fenton-like catalyst[J]. RSC Advances, 2015, 5(51): 40872-40883. |
| [41] | YANG Ziyi, WU Shimin, SUN Hangyu, et al. Efficient degradation of organic compounds in landfill leachate via developing bio-electro-Fenton process[J]. Journal of Environmental Management, 2022, 319: 115719. |
| [42] | ARIMI Milton M, ZHANG Yongjun, NAMANGO Saul S, et al. Reuse of recalcitrant-rich anaerobic effluent as dilution water after enhancement of biodegradability by Fenton processes[J]. Journal of Environmental Management, 2016, 168: 10-15. |
| [43] | GIANNAKIS Stefanos, LÓPEZ María Inmaculada Polo, SPUHLER Dorothee, et al. Solar disinfection is an augmentable, in situ-generated photo-Fenton reaction: Part 2: A review of the applications for drinking water and wastewater disinfection[J]. Applied Catalysis B: Environmental, 2016, 198: 431-446. |
| [44] | YUAN Yue, LAI Bo, YANG Ping, et al. Treatment of ammunition wastewater by the combined Fe0/air and Fenton process (1stFe0/air-Fenton-2ndFe0/air)[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 65: 286-294. |
| [45] | WU Yiting, YU Yihui, NGUYEN Van-Huy, et al. Enhanced xylene removal by photocatalytic oxidation using fiber-illuminated honeycomb reactor at ppb level[J]. Journal of Hazardous Materials, 2013, 262: 717-725. |
| [46] | HANDA Misako, LEE Yuson, SHIBUSAWA Mai, et al. Removal of VOCs in waste gas by the photo-Fenton reaction: Effects of dosage of Fenton reagents on degradation of toluene gas in a bubble column[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(1): 88-97. |
| [47] | LIU Gaoyuan, JI Jian, HUANG Haibao, et al. UV/H2O2: An efficient aqueous advanced oxidation process for VOCs removal[J]. Chemical Engineering Journal, 2017, 324: 44-50. |
| [48] | GUO Weiwei, LI Tianqi, CHEN Qianru, et al. The roles of wavelength in the gaseous toluene removal with OH from UV activated Fenton reagent[J]. Chemosphere, 2021, 275: 129998. |
| [49] | PAN Xuqin, GU Zhepei, CHEN Weiming, et al. Preparation of biochar and biochar composites and their application in a Fenton-like process for wastewater decontamination: A review[J]. Science of The Total Environment, 2021, 754: 142104. |
| [50] | LI Jiayi, Ninh PHAM A, DAI Ruobin, et al. Recent advances in Cu-Fenton systems for the treatment of industrial wastewaters: Role of Cu complexes and Cu composites[J]. Journal of Hazardous Materials, 2020, 392: 122261. |
| [51] | THOMAS Nishanth, DIONYSIOU Dionysios D, PILLAI Suresh C. Heterogeneous Fenton catalysts: A review of recent advances[J]. Journal of Hazardous Materials, 2021, 404: 124082. |
| [52] | CHOI Kyunghoon, Sungjun BAE, LEE Woojin. Degradation of off-gas toluene in continuous pyrite Fenton system[J]. Journal of Hazardous Materials, 2014, 280: 31-37. |
| [53] | HUANG Haibao, XIE Xiaowen, XIAO Fei, et al. A critical review of deep oxidation of gaseous volatile organic compounds via aqueous advanced oxidation processes[J]. Environmental Science & Technology, 2024, 58(42): 18456-18473. |
| [54] | XIE Ruijie, LIU Gaoyuan, LIU Dingping, et al. Wet scrubber coupled with heterogeneous UV/Fenton for enhanced VOCs oxidation over Fe/ZSM-5 catalyst[J]. Chemosphere, 2019, 227: 401-408. |
| [55] | ZHUANG Yuan, YUAN Siyi, LIU Jiemin, et al. Synergistic effect and mechanism of mass transfer and catalytic oxidation of octane degradation in yolk-shell Fe3O4@C/Fenton system[J]. Chemical Engineering Journal, 2020, 379: 122262. |
| [56] | ZHUANG Yuan, LIU Jiemin, YUAN Siyi, et al. Degradation of octane using an efficient and stable core-shell Fe3O4@C during Fenton processes: Enhanced mass transfer, adsorption and catalysis[J]. Applied Surface Science, 2020, 515: 146083. |
| [57] | YANG Jingling, ZHANG Qing, ZHANG Feng, et al. Three-dimensional hierarchical porous sludge-derived carbon supported on silicon carbide foams as effective and stable Fenton-like catalyst for odorous methyl mercaptan elimination[J]. Journal of Hazardous Materials, 2018, 358: 136-144. |
| [58] | LU Qi, LIU Yongze, LI Benhang, et al. Reaction kinetics of dissolved black carbon with hydroxyl radical, sulfate radical and reactive chlorine radicals[J]. Science of The Total Environment, 2022, 828: 153984. |
| [59] | GHANBARI Farshid, MORADI Mahsa. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review[J]. Chemical Engineering Journal, 2017, 310: 41-62. |
| [60] | LU Jiaqing, WANG Yukang, MCCALLUM Terry, et al. Harnessing radical chemistry via electrochemical transition metal catalysis[J]. iScience, 2020, 23(12): 101796. |
| [61] | XIE Ruijie, JI Jian, GUO Kaiheng, et al. Wet scrubber coupled with UV/PMS process for efficient removal of gaseous VOCs: Roles of sulfate and hydroxyl radicals[J]. Chemical Engineering Journal, 2019, 356: 632-640. |
| [62] | Stanisław WACŁAWEK, LUTZE Holger V, Klaudiusz GRÜBEL, et al. Chemistry of persulfates in water and wastewater treatment: A review[J]. Chemical Engineering Journal, 2017, 330: 44-62. |
| [63] | Wen-Da OH, DONG Zhili, Teik-Thye LIM. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects[J]. Applied Catalysis B: Environmental, 2016, 194: 169-201. |
| [64] | LEE Jaesang, VON GUNTEN Urs, KIM Jae-Hong. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks[J]. Environmental Science & Technology, 2020, 54(6): 3064-3081. |
| [65] | TANG Shoufeng, TANG Jiachen, YUAN Deling, et al. Elimination of humic acid in water: Comparison of UV/PDS and UV/PMS[J]. RSC Advances, 2020, 10(30): 17627-17634. |
| [66] | XIE Ruijie, CAO Jianping, XIE Xiaowen, et al. Mechanistic insights into complete oxidation of chlorobenzene to CO2 via wet scrubber coupled with UV/PDS[J]. Chemical Engineering Journal, 2020, 401: 126077. |
| [67] | XIE Ruijie, SUO Ziyi, GUO Kaiheng, et al. Promoting multiple reactive oxygen species generation for deep oxidation of VOCs by UV/persulfate/permanganate[J]. Separation and Purification Technology, 2023, 325: 124770. |
| [68] | QIAN Zhen, GUO Yongxue, LUO Mengchao, et al. Unveiling the activity difference cause and ring-opening reaction routes of typical radicals induced degradation of toluene[J]. Journal of Hazardous Materials, 2024, 471: 134273. |
| [69] | XIE Ruijie, JI Jian, HUANG Haibao, et al. Heterogeneous activation of peroxymonosulfate over monodispersed Co3O4/activated carbon for efficient degradation of gaseous toluene[J]. Chemical Engineering Journal, 2018, 341: 383-391. |
| [70] | XIE Xiaowen, XIAO Fei, ZHAN Sihui, et al. Deep oxidation of chlorinated VOCs by efficient catalytic peroxide activation over nanoconfined Co@NCNT catalysts[J]. Environmental Science & Technology, 2024, 58(3): 1625-1635. |
| [71] | LI Jiebing, HUSSAIN Asif, LI Dengxin, et al. Catalytic performance of graphene-bimetallic composite for heterogeneous oxidation of acid orange 7 from aqueous solution[J]. Environmental Science and Pollution Research, 2017, 24(8): 7264-7273. |
| [72] | CHENG Zhangqi, ZHOU Yan, ZHAO Xiaoyu, et al. Efficient removal of VOCs emission from soil thermal desorption via MnCoO x /Kaolin activating peroxymonosulfate in wet scrubber[J]. Chemical Engineering Journal, 2024, 480: 148159. |
| [73] | HOU Jungang, ZHANG Bo, LI Zhuwei, et al. Vertically aligned oxygenated-CoS2-MoS2 heteronanosheet architecture from polyoxometalate for efficient and stable overall water splitting[J]. ACS Catalysis, 2018, 8(5): 4612-4621. |
| [74] | XIANG Yongjie, XIE Xiaowen, ZHONG Huanran, et al. Efficient catalytic elimination of toxic volatile organic compounds via advanced oxidation process wet scrubbing with bifunctional cobalt sulfide/activated carbon catalysts[J]. Environmental Science & Technology, 2024, 58(20): 8846-8856. |
| [75] | JIN Xiaohui, PELDSZUS Sigrid, HUCK Peter M. Predicting the reaction rate constants of micropollutants with hydroxyl radicals in water using QSPR modeling[J]. Chemosphere, 2015, 138: 1-9. |
| [76] | BAVASSO Irene, MONTANARO Daniele, PETRUCCI Elisabetta. Ozone-based electrochemical advanced oxidation processes[J]. Current Opinion in Electrochemistry, 2022, 34: 101017. |
| [77] | Tomáš PROSTĚJOVSKÝ, Alena KULIŠŤÁKOVÁ, RELI Martin, et al. Photochemical treatment (UV/O3+UV/H2O2) of waste gas emissions containing organic pollutants in pilot plant unit[J]. Process Safety and Environmental Protection, 2022, 163: 274-282. |
| [78] | SERIDOU Petroula, KALOGERAKIS Nicolas. Disinfection applications of ozone micro- and nanobubbles[J]. Environmental Science: Nano, 2021, 8(12): 3493-3510. |
| [79] | TEMESGEN Tatek, HAN Mooyoung. Ultrafine bubbles as an augmenting agent for ozone-based advanced oxidation[J]. Water Science and Technology, 2021, 84(12): 3705-3715. |
| [80] | LIU Ting, ZHANG Bin, LI Wenqian, et al. The catalytic oxidation process of atrazine by ozone microbubbles: Bubble formation, ozone mass transfer and hydroxyl radical generation[J]. Chemosphere, 2023, 325: 138361. |
| [81] | 刘春, 庞晓克, 高立涛, 等. 水介质中微气泡臭氧化处理高浓度甲苯气体[J]. 环境工程学报, 2019, 13(1): 116-124. |
| LIU Chun, PANG Xiaoke, GAO Litao, et al. High-concentration toluene gas treatment by microbubble ozonation in water medium[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 116-124. | |
| [82] | REKHATE Chhaya V, SRIVASTAVA J K. Recent advances in ozone-based advanced oxidation processes for treatment of wastewater—A review[J]. Chemical Engineering Journal Advances, 2020, 3: 100031. |
| [83] | BIARD Pierre-François, COUVERT Annabelle, RENNER Christophe, et al. Intensification of volatile organic compounds mass transfer in a compact scrubber using the O3/H2O2 advanced oxidation process: Kinetic study and hydroxyl radical tracking[J]. Chemosphere, 2011, 85(7): 1122-1129. |
| [84] | CHEN Wei R, SHARPLESS Charles M, LINDEN Karl G, et al. Treatment of volatile organic chemicals on the EPA Contaminant candidate list using ozonation and the O3/H2O2 advanced oxidation process[J]. Environmental Science & Technology, 2006, 40(8): 2734-2739. |
| [85] | DEWULF J, VAN LANGENHOVE H, DE SMEDT E, et al. Combination of advanced oxidation processes and gas absorption for the treatment of chlorinated solvents in waste gases[J]. Water Science and Technology, 2001, 44(9): 173-180. |
| [86] | WANG Hao, ZHANG Siyu, HE Xuwen, et al. Comparison of macro and micro-pollutants abatement from biotreated landfill leachate by single ozonation, O3/H2O2, and catalytic ozonation processes[J]. Chemical Engineering Journal, 2023, 452: 139503. |
| [87] | SUO Zhiru, ZHUANG Yuan, ZHAO Yanjun, et al. Bypassing gas-liquid mass transfer resistance in a Fenton wet scrubber for boosting the removal of hydrophobic styrene: Construction of a novel gas-solid-liquid triple-phase interface[J]. Chemical Engineering Journal, 2025, 506: 160166. |
| [88] | QIN Caihong, JIANG Chaochao, GUO Mengke, et al. Dielectric barrier discharge coupled with Fe2+, Mn2+ and Cu2+ scrubbing for toluene removal[J]. Chemosphere, 2022, 290: 133306. |
| [89] | GAO Guoying, SHEN Jimin, CHU Wei, et al. Mechanism of enhanced diclofenac mineralization by catalytic ozonation over iron silicate-loaded pumice[J]. Separation and Purification Technology, 2017, 173: 55-62. |
| [90] | HE Chun, LIAO Yuhong, CHEN Cheng, et al. Realizing a redox-robust Ag/MnO2 catalyst for efficient wet catalytic ozonation of S-VOCs: Promotional role of Ag(0)/Ag(Ⅰ)-Mn based redox shuttle[J]. Applied Catalysis B: Environmental, 2022, 303: 120881. |
| [91] | WANG Liangliang, ZHANG Chenhang, XU Tongzhou, et al. Treatment of VOCs with a wet scrubbing-catalytic ozonation process: Efficiency, mechanism and pilot-scale application[J]. Separation and Purification Technology, 2024, 336: 126223. |
| [92] | YAN Luchun, LIU Jiemin, FENG Zhenhua, et al. Continuous degradation of BTEX in landfill gas by the UV-Fenton reaction[J]. RSC Advances, 2016, 6(2): 1452-1459. |
| [93] | CHEN Haiying, LIU Jiemin, PEI Yipu, et al. Study on the synergistic effect of UV/Fenton oxidation and mass transfer enhancement with addition of activated carbon in the bubble column reactor[J]. Chemical Engineering Journal, 2018, 336: 82-91. |
| [94] | CHEN Haiying, LIU Jiemin, WU Chuandong, et al. A comprehensive mathematical model for analyzing synergistic effect of oxidation and mass transfer enhancement during UV-Fenton removal of VOCs[J]. Chemosphere, 2021, 283: 131021. |
| [95] | FU Chenchong, PAN Cong, CHEN Tao, et al. Adsorption-enforced Fenton-like process using activated carbon-supported iron oxychloride catalyst for wet scrubbing of airborne dichloroethane[J]. Chemosphere, 2022, 307: 136193. |
| [96] | XIE Xiaowen, CAO Jiachun, XIANG Yongjie, et al. Accelerated iron cycle inducing molecular oxygen activation for deep oxidation of aromatic VOCs in MoS2 co-catalytic Fe3+/PMS system[J]. Applied Catalysis B: Environmental, 2022, 309: 121235. |
| [97] | XIE Xiaowen, XIE Ruijie, SUO Ziyi, et al. A highly dispersed Co-Fe bimetallic catalyst to activate peroxymonosulfate for VOC degradation in a wet scrubber[J]. Environmental Science: Nano, 2021, 8(10): 2976-2987. |
| [98] | MIAO Huanran, ZHANG Xinwei, ZHANG Xiai, et al. Activation of peroxymonosulfate by cobalt doped carbon nitride for gaseous VOC degradation[J]. Chemical Engineering Journal, 2024, 485: 149743. |
| [99] | WU Jieman, WANG Jiangen, LIU Chuying, et al. Removal of gaseous volatile organic compounds by a multiwalled carbon nanotubes/peroxymonosulfate wet scrubber[J]. Environmental Science & Technology, 2022, 56(19): 13996-14007. |
| [1] | 李航, 杨鸿辉, 石博方, 延卫. MOFs及其衍生物在非均相Fenton催化中应用的研究进展[J]. 化工进展, 2022, 41(11): 5811-5819. |
| [2] | 陈希,纪志永,黄智辉,赵颖颖,刘杰,袁俊生. 电化学协同过硫酸盐氧化法处理含盐有机废水[J]. 化工进展, 2019, 38(12): 5572-5577. |
| [3] | 杨仲卿, 刘显伟, 张力, 冉景煜, 闫云飞, 杜学森. 挥发性有机废气热氧化技术研究进展[J]. 化工进展, 2017, 36(10): 3866-3875. |
| [4] | 汪 涵,郭桂悦,周玉莹,梁忠越. 挥发性有机废气治理技术的现状与进展 [J]. 化工进展, 2009, 28(10): 1833-. |
| [5] | 梅 涛,刘 娟,李金坡,张礼知,艾智慧. 纳米铁/碳纳米管复合氧阴极电-Fenton降解RhB [J]. 化工进展, 2007, 26(8): 1166-. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |