化工进展 ›› 2025, Vol. 44 ›› Issue (S1): 462-477.DOI: 10.16085/j.issn.1000-6613.2025-0834
• 资源与环境化工 • 上一篇
张鸿武1(
), 胡其会1(
), 赵雪峰2, 李玉星1, 孟岚2, 张利军3, 朱建鲁1, 王武昌1
收稿日期:2025-06-12
修回日期:2025-08-13
出版日期:2025-10-25
发布日期:2025-11-24
通讯作者:
胡其会
作者简介:张鸿武(2001—),男,硕士研究生,研究方向为CO2管道泄漏风险评价。E-mail:2161762953@qq.com。
基金资助:
ZHANG Hongwu1(
), HU Qihui1(
), ZHAO Xuefeng2, LI Yuxing1, MENG Lan2, ZHANG Lijun3, ZHU Jianlu1, WANG Wuchang1
Received:2025-06-12
Revised:2025-08-13
Online:2025-10-25
Published:2025-11-24
Contact:
HU Qihui
摘要:
随着碳捕集、利用与封存(carbon capture, utilization and storage,CCUS)技术的快速发展,CO2管道运输规模不断扩大,其管道泄漏风险的研究也备受关注。为了保障CO2管道的安全运行和管理,为全球CCUS项目的安全实施提供更有力的支持,本文系统梳理了CO2的管道泄漏危害、暴露浓度规定、管道失效概率、泄漏扩散浓度及距离和管道泄漏风险评估方法等方面的研究现状。研究现状表明,与CO2管道泄漏引起的低温冻伤、噪声污染和杂质危害相关的研究缺乏;管道泄漏导致的CO2泄漏扩散,其浓度的安全阈值规定不统一;在计算CO2管道失效概率时,大部分采用天然气管道失效概率,且未根据管道实际情况进行失效概率修正;目前对工业规模CO2管道的实验研究不足,且很难整合分析不同实验环境下CO2管道泄漏造成的后果;CO2泄漏扩散浓度的研究主要是基于商业软件模拟,可以用于浓度风险后果分析,但软件的适用性和准确性有待提高;对基于理论模型分析的CO2泄漏扩散浓度模型研究不足;目前CO2管道泄漏的风险评估主要采用的是定量风险评价(quantitative risk assessment,QRA)方法,风险评估方法比较单一;机器学习的引入可以为CO2管道泄漏风险评估带来新的活力和更高的准确性。
中图分类号:
张鸿武, 胡其会, 赵雪峰, 李玉星, 孟岚, 张利军, 朱建鲁, 王武昌. 陆上CO2管道泄漏风险研究进展[J]. 化工进展, 2025, 44(S1): 462-477.
ZHANG Hongwu, HU Qihui, ZHAO Xuefeng, LI Yuxing, MENG Lan, ZHANG Lijun, ZHU Jianlu, WANG Wuchang. Research progress on leakage risk of onshore CO2 pipeline[J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 462-477.
| 暴露时间/min | SLOT的CO2体积分数/% | SLOD的CO2体积分数/% |
|---|---|---|
| 60 | 6.3 | 8.4 |
| 30 | 6.9 | 9.2 |
| 20 | 7.2 | 9.6 |
| 10 | 7.9 | 10.5 |
| 5 | 8.6 | 11.5 |
| 1 | 10.5 | 14.0 |
表1 SLOT和SLOD的CO2浓度规定
| 暴露时间/min | SLOT的CO2体积分数/% | SLOD的CO2体积分数/% |
|---|---|---|
| 60 | 6.3 | 8.4 |
| 30 | 6.9 | 9.2 |
| 20 | 7.2 | 9.6 |
| 10 | 7.9 | 10.5 |
| 5 | 8.6 | 11.5 |
| 1 | 10.5 | 14.0 |
| 空气中CO2体积分数/% | 暴露时间 | 对人体的影响 |
|---|---|---|
| 17~30 | 1min内 | 行为失控,神志不清,昏迷,死亡 |
| 10~15 | 1到几分钟 | 头晕,嗜睡,严重的肌肉抽搐,神志不清 |
| 7~10 | 几分钟 | 神志不清,接近昏迷 |
| 1.5min~1h | 头痛,心率增加,头晕气短,出汗,呼吸急促 | |
| 6 | 1~2min <16min 几小时 | 听力和视力障碍 头痛,呼吸困难 震颤 |
| 4~5 | 几分钟之内 | 头痛,头晕,血压升高,呼吸不畅 |
| 3 | 1h | 轻度头痛,出汗,平静时呼吸困难 |
| 2 | 几小时 | 头痛,轻度劳累后呼吸困难 |
| 0.5~1 | 8h | 可接受的职业危险水平 |
表2 暴露在不同CO2浓度下的影响
| 空气中CO2体积分数/% | 暴露时间 | 对人体的影响 |
|---|---|---|
| 17~30 | 1min内 | 行为失控,神志不清,昏迷,死亡 |
| 10~15 | 1到几分钟 | 头晕,嗜睡,严重的肌肉抽搐,神志不清 |
| 7~10 | 几分钟 | 神志不清,接近昏迷 |
| 1.5min~1h | 头痛,心率增加,头晕气短,出汗,呼吸急促 | |
| 6 | 1~2min <16min 几小时 | 听力和视力障碍 头痛,呼吸困难 震颤 |
| 4~5 | 几分钟之内 | 头痛,头晕,血压升高,呼吸不畅 |
| 3 | 1h | 轻度头痛,出汗,平静时呼吸困难 |
| 2 | 几小时 | 头痛,轻度劳累后呼吸困难 |
| 0.5~1 | 8h | 可接受的职业危险水平 |
| 泄漏孔径/mm | 失效概率/次·km-1·a-1 |
|---|---|
| 3~10(小孔) | 6.5×10-5 |
| 10~50(中孔) | 1.4×10-5 |
| 50~100(大孔) | 1×10-5 |
| >150(全孔径) | 1.4×10-5 |
表3 基于天然气管道失效数据计算的CO2管道失效概率
| 泄漏孔径/mm | 失效概率/次·km-1·a-1 |
|---|---|
| 3~10(小孔) | 6.5×10-5 |
| 10~50(中孔) | 1.4×10-5 |
| 50~100(大孔) | 1×10-5 |
| >150(全孔径) | 1.4×10-5 |
| 泄漏孔径/mm | 失效概率/次·km-1·a-1 |
|---|---|
| 3~10(小孔) | 1.4×10-4 |
| 10~50(中孔) | 9.5×10-5 |
| 50~150(大孔) | 2×10-5 |
| >150(全孔径) | 8.5×10-5 |
表4 基于CO2管道失效数据计算CO2管道失效概率
| 泄漏孔径/mm | 失效概率/次·km-1·a-1 |
|---|---|
| 3~10(小孔) | 1.4×10-4 |
| 10~50(中孔) | 9.5×10-5 |
| 50~150(大孔) | 2×10-5 |
| >150(全孔径) | 8.5×10-5 |
| 泄漏孔径/mm | 失效概率/次·km-1·a-1 |
|---|---|
| 10 | 2.8×10-4 |
| 50 | 4.0×10-5 |
| 100 | 1.36×10-5 |
| 全孔径破裂 | 2.64×10-5 |
表5 各泄漏孔径下的CO2管道失效概率
| 泄漏孔径/mm | 失效概率/次·km-1·a-1 |
|---|---|
| 10 | 2.8×10-4 |
| 50 | 4.0×10-5 |
| 100 | 1.36×10-5 |
| 全孔径破裂 | 2.64×10-5 |
| CO2相态 | 管长/m | 管内径/mm | 温度/℃ | 压力/MPa | 泄漏规模或泄漏孔径 | 参考文献 |
|---|---|---|---|---|---|---|
| 密相 | 200 | 25~150 | 2.9~13.7 | 8.2~15.7 | 中/大规模管道释放 | [ |
| 气相、密相和超临界相 | 226.6 | 193.7 | 13.1 | 15.08 | 大规模管道释放 | [ |
| 密相 | 40 | 50 | 20~31 | 10 | 小规模泄漏,泄漏孔径6~50mm | [ |
| 液相 | 144 | 152 | 环境温度 | 13.5~15 | 管道穿刺和破裂 | [ |
| 超临界相 | 257 | 233 | 37.1、36.2、35.6和35.1 | 8、8.2、9、7.6 | 泄漏孔径15mm、50mm、100mm和233mm | [ |
| 气相、密相和超临界相 | 257 | 233 | 16.2、25、35、37.1等 | 4、7.6、8.2和9.2等 | 泄漏孔径15mm、50mm和233mm | [ |
| 密相和超临界相 | 22 | 187 | 20、30和40 | 4、7.5、9和10.5 | 泄漏孔径19mm | [ |
| 气相、密相和超临界相 | 258 | 250 | 20、33、35和37 | 4、7.7、7.92和9 | 泄漏孔径15mm和50mm | [ |
表6 国内外主要CO2管道泄漏的CO2扩散实验
| CO2相态 | 管长/m | 管内径/mm | 温度/℃ | 压力/MPa | 泄漏规模或泄漏孔径 | 参考文献 |
|---|---|---|---|---|---|---|
| 密相 | 200 | 25~150 | 2.9~13.7 | 8.2~15.7 | 中/大规模管道释放 | [ |
| 气相、密相和超临界相 | 226.6 | 193.7 | 13.1 | 15.08 | 大规模管道释放 | [ |
| 密相 | 40 | 50 | 20~31 | 10 | 小规模泄漏,泄漏孔径6~50mm | [ |
| 液相 | 144 | 152 | 环境温度 | 13.5~15 | 管道穿刺和破裂 | [ |
| 超临界相 | 257 | 233 | 37.1、36.2、35.6和35.1 | 8、8.2、9、7.6 | 泄漏孔径15mm、50mm、100mm和233mm | [ |
| 气相、密相和超临界相 | 257 | 233 | 16.2、25、35、37.1等 | 4、7.6、8.2和9.2等 | 泄漏孔径15mm、50mm和233mm | [ |
| 密相和超临界相 | 22 | 187 | 20、30和40 | 4、7.5、9和10.5 | 泄漏孔径19mm | [ |
| 气相、密相和超临界相 | 258 | 250 | 20、33、35和37 | 4、7.7、7.92和9 | 泄漏孔径15mm和50mm | [ |
| 软件名称 | 模型 | 用途 | 实验验证 | 优缺点 | 参考文献 |
|---|---|---|---|---|---|
| Phast | UDM | 模拟管道、储罐泄漏 | Kit Fox、Mcquaid[ | 模型经大量实验验证,运行速度快,适合模拟长距离CO2管道泄漏,模拟远场CO2扩散距离结果较准确,但模拟近场CO2扩散距离结果较差 | [ |
| Fluent | 组分输运模型、多组分扩散模型、湍流模型 | 陈兵等[ | 运行速度慢,但可以模拟存在地形变化和障碍物的长距离CO2管道泄漏,模拟结果较准确 | [ | |
| ALOHA | DEGADIS | 模拟点源 泄漏 | Kit Fox | 便于模拟点源泄漏,但不能建立管道泄漏模型 | [ |
| Shell FRED | HEGADIS | Mcquaid和COOLTRANS | [ | ||
| EFFECTS | SLAB | Kit Fox | [ |
表7 国内外主要采用的软件模拟CO2泄漏扩散
| 软件名称 | 模型 | 用途 | 实验验证 | 优缺点 | 参考文献 |
|---|---|---|---|---|---|
| Phast | UDM | 模拟管道、储罐泄漏 | Kit Fox、Mcquaid[ | 模型经大量实验验证,运行速度快,适合模拟长距离CO2管道泄漏,模拟远场CO2扩散距离结果较准确,但模拟近场CO2扩散距离结果较差 | [ |
| Fluent | 组分输运模型、多组分扩散模型、湍流模型 | 陈兵等[ | 运行速度慢,但可以模拟存在地形变化和障碍物的长距离CO2管道泄漏,模拟结果较准确 | [ | |
| ALOHA | DEGADIS | 模拟点源 泄漏 | Kit Fox | 便于模拟点源泄漏,但不能建立管道泄漏模型 | [ |
| Shell FRED | HEGADIS | Mcquaid和COOLTRANS | [ | ||
| EFFECTS | SLAB | Kit Fox | [ |
| 方法名称 | 方法种类 | 用途 |
|---|---|---|
| 专家判断 | 定性 | 具体风险点的风险判断 |
| 风险矩阵 | 定性 | 风险分级、结果显示 |
| 安全检查表 | 定性/半定量 | 合规性审查 |
| 肯特评分法 | 半定量 | 系统风险评价、量化风险 |
| 故障树分析 | 定性/定量 | 识别风险因素、分析失效可能性 |
| 事件树分析 | 定性/定量 | 失效后果分析 |
| 数值模拟 | 定量 | 失效后果分析 |
| QRA | 定量 | 失效后果分析、确定安全距离 |
| HAZOP | 定性 | 确定风险的性质、可能的影响范围 |
| LOPA | 半定量 | 分析失效可能性 |
表8 管道风险评估方法
| 方法名称 | 方法种类 | 用途 |
|---|---|---|
| 专家判断 | 定性 | 具体风险点的风险判断 |
| 风险矩阵 | 定性 | 风险分级、结果显示 |
| 安全检查表 | 定性/半定量 | 合规性审查 |
| 肯特评分法 | 半定量 | 系统风险评价、量化风险 |
| 故障树分析 | 定性/定量 | 识别风险因素、分析失效可能性 |
| 事件树分析 | 定性/定量 | 失效后果分析 |
| 数值模拟 | 定量 | 失效后果分析 |
| QRA | 定量 | 失效后果分析、确定安全距离 |
| HAZOP | 定性 | 确定风险的性质、可能的影响范围 |
| LOPA | 半定量 | 分析失效可能性 |
| [1] | 胡其会, 李玉星, 张建, 等. “双碳” 战略下中国CCUS技术现状及发展建议[J]. 油气储运, 2022, 41(4): 361-371. |
| HU Qihui, LI Yuxing, ZHANG Jian, et al. Current status and development suggestions of CCUS technology in China under the “Double Carbon” strategy[J]. Oil & Gas Storage and Transportation, 2022, 41(4): 361-371. | |
| [2] | 黄维和, 李玉星, 陈朋超. 碳中和愿景下中国二氧化碳管道发展战略[J]. 天然气工业, 2023, 43(7): 1-9. |
| HUANG Weihe, LI Yuxing, CHEN Pengchao. China’s CO2 pipeline development strategy under the strategy of carbon neutrality[J]. Natural Gas Industry, 2023, 43(7): 1-9. | |
| [3] | 孙海萍, 孙洋洲. 国内油气企业CCUS项目现状及产业发展探究[J]. 低碳化学与化工, 2024, 49(7): 139-146. |
| SUN Haiping, SUN Yangzhou. Study on project current situation and industry development of CCUS in domestic oil and gas enterprises[J]. Low-Carbon Chemistry and Chemical Engineering, 2024, 49(7): 139-146. | |
| [4] | 张强, 杨玉锋, 张学鹏, 等. 超临界二氧化碳管道完整性管理技术发展现状与挑战[J]. 油气储运, 2023, 42(2): 152-160. |
| ZHANG Qiang, YANG Yufeng, ZHANG Xuepeng, et al. Technology status and challenge of integrity management of supercritical carbon dioxide pipeline[J]. Oil & Gas Storage and Transportation, 2023, 42(2): 152-160. | |
| [5] | 逄建鑫. 含杂质超临界CO2输送体系中X65钢SCC敏感性及机理研究[D]. 青岛: 中国石油大学(华东), 2022. |
| PANG Jianxin. Research on stress corrosion susceptibility and mechanism of X65 pipelines in supercritical CO2 transportation system[D]. Qingdao: China University of Petroleum (East China), 2022. | |
| [6] | 闫锋, 殷布泽, 欧阳欣, 等. CO2管道泄漏过程减压波数值计算模型及初始温压的影响[J]. 油气储运, 2024, 43(5): 570-578. |
| YAN Feng, YIN Buze, OUYANG Xin, et al. Numerical calculation model for decompression waves in CO2 pipeline leakage and effect of initial temperature and pressure[J]. Oil & Gas Storage and Transportation, 2024, 43(5): 570-578. | |
| [7] | 边疆. 大庆油田天然气处理过程中硫化氢对环境的影响评价[J]. 油气田地面工程, 2016, 35(4): 84-87, 92. |
| BIAN Jiang. The environment impact assessment of hydrogen sulfide in the process of natural gas processing[J]. Oil-Gas Field Surface Engineering, 2016, 35(4): 84-87, 92. | |
| [8] | 滕霖. 超临界CO2管道泄漏扩散特性及定量风险评估研究[D]. 青岛: 中国石油大学(华东), 2019. |
| TENG Lin. The leakage and dispersion characteristics and quantitativerisk assessment of supercritical CO2 released from pipelines[D]. Qingdao: China University of Petroleum (East China), 2019. | |
| [9] | 毕宗岳, 黄晓辉, 李银山, 等. 超临界二氧化碳输送用HFW焊管开发[J]. 焊管, 2023, 46(10): 43-48. |
| BI Zongyue, HUANG Xiaohui, LI Yinshan, et al. Development of HFW steel pipe for supercritical carbon dioxide transportation[J]. Welded Pipe and Tube, 2023, 46(10): 43-48. | |
| [10] | 任韬. 管道输送高压密相CO2泄漏射流危害研究[D]. 北京: 北京理工大学, 2016. |
| REN Tao. Study on the hazard of high-pressure dense-phase CO2 leakage jet in pipeline transportation[D]. Beijing: Beijing Institute of Technology, 2016. | |
| [11] | 张吉胜. 超临界CO2输送环境中的杂质协同作用及腐蚀速率预测[D]. 青岛: 中国石油大学(华东), 2021. |
| ZHANG Jisheng. Synergistic effect of impurities and corrosion rate prediction in supercritical CO2 transport environment. Qingdao: China University of Petroleum (East China), 2021. | |
| [12] | 殷布泽, 闫锋, 聂超飞, 等. 基于PHAST的CO2露空管道大规模泄漏与放空模拟[J]. 油气与新能源, 2023, 35(6): 82-89. |
| YIN Buze, YAN Feng, NIE Chaofei, et al. Large scale venting and leakage simulation of exposed CO2 pipelines based on PHAST[J]. Petroleum and New Energy, 2023, 35(6): 82-89. | |
| [13] | 杨柳婷. 基于泄漏扩散后果评价的CO2管道截断阀站间距研究[D]. 成都: 西南石油大学, 2016. |
| YANG Liuting. Study on the distance between block valve stations of CO2 pipeline based on the evaluation of leakage and diffusion consequences[D]. Chengdu: Southwest Petroleum University, 2016. | |
| [14] | 张对红, 丛思琦, 胡其会, 等. 初始温压对超临界/密相CO2管道泄放的影响实验[J]. 油气储运, 2024, 43(3): 281-288. |
| ZHANG Duihong, CONG Siqi, HU Qihui, et al. Experiments on the influence of initial temperature and pressure on the relief of supercritical/dense-phase CO2 pipeline[J]. Oil & Gas Storage and Transportation, 2024, 43(3): 281-288. | |
| [15] | HU Qihui, GUO Yaqi, CHEN Junwen, et al. Experimental study of leakage diffusion in supercritical/dense phase CO2 pipelines[J]. Energy, 2025, 325: 136217. |
| [16] | 陈俊文, 汤晓勇, 刘勇, 等. 超临界CO2管道破裂泄漏影响探讨[J]. 天然气与石油, 2023, 41(2): 1-8. |
| CHEN Junwen, TANG Xiaoyong, LIU Yong, et al. Discussion on the impact of supercritical CO2 pipeline rupture leakage[J]. Natural Gas and Oil, 2023, 41(2): 1-8. | |
| [17] | 王慧茹. 复杂条件下CO2扩散特性研究[D]. 石家庄: 石家庄铁道大学, 2021. |
| WANG Huiru. Study on diffusion characteristics of CO2 under complex conditions[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2021. | |
| [18] | 栗帅, 张一梅, 王维波, 等. 超临界非纯CO2输送管道区域人类健康风险评估的QRA概率模型及应用[J]. 环境工程, 2021, 39(5): 225-230. |
| LI Shuai, ZHANG Yimei, WANG Weibo, et al. Qra probability model for human health risk assessment in supercritical non-pure CO2 pipeline transportation area and its application[J]. Environmental Engineering, 2021, 39(5): 225-230. | |
| [19] | 许鸿云. 埋地CO2输送管道泄漏扩散及危险区域研究[J]. 化学工程与装备, 2024(6): 23-26. |
| XU Hongyun. Study on leakage, diffusion and dangerous area of buried CO2 pipeline[J]. Chemical Engineering & Equipment, 2024(6): 23-26. | |
| [20] | WANG Jun, LI He, FENG Hui, et al. Consequence of high-pressure CO2 pipeline failure: Full-scale burst test and numerical simulation[J]. Journal of Loss Prevention in the Process Industries, 2024, 92: 105489. |
| [21] | ABRAHAM John, CHENG Lijing, GORMAN John. CFD simulation models and diffusion models for predicting carbon dioxide plumes following tank and pipeline ruptures—Laboratory test and a real-world case study[J]. Energies, 2024, 17(5): 1079. |
| [22] | MAZZOLDI A. Leakage risk assessment of CO2 transportation by pipeline at the Illinois Basin Decatur Project, Decatur, Illinois[R]. Berkeley, CA: Lawrence Berkeley National Laboratory, 2013. |
| [23] | 李甜. 含外表面裂纹CO2管道疲劳扩展有限元分析[D]. 沈阳: 沈阳建筑大学, 2023. |
| LI Tian. Finite element analysis of fatigue extension in CO2 pipeline with external surface cracks. Shenyang: Shenyang Jianzhu University, 2023. | |
| [24] | KOORNNEEF Joris, SPRUIJT Mark, MOLAG Menso, et al. Quantitative risk assessment of CO2 transport by pipelines—a review of uncertainties and their impacts[J]. Journal of Hazardous Materials, 2010, 177(1/2/3): 12-27. |
| [25] | GIBSON-POOLE C M, SVENDSEN L, UNDERSCHULTZ J, et al. The latrobe valley CO2 storage assessment[C]//IEA Workshop. Melbourne, VIC, 2006. |
| [26] | OLDENBURG C M. Geologic carbon sequestration: Sustainability and environmental risk[M]//Encyclopedia of sustainability science and technology. New York, NY: Springer, 2012: 4119-4133. |
| [27] | VIANELLO Chiara, MOCELLIN Paolo, MACCHIETTO Sandro, et al. Risk assessment in a hypothetical network pipeline in UK transporting carbon dioxide[J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 515-527. |
| [28] | XI Dongmin, LU Hongfang, FU Yun, et al. Carbon dioxide pipelines: A statistical analysis of historical accidents[J]. Journal of Loss Prevention in the Process Industries, 2023, 84: 105129. |
| [29] | VITALI Matteo, ZULIANI Cristina, CORVARO Francesco, et al. Statistical analysis of incidents on onshore CO2 pipelines based on PHMSA database[J]. Journal of Loss Prevention in the Process Industries, 2022, 77: 104799. |
| [30] | VENDRIG M, SPONGE J, BIRD A, et al. Risk analysis of the geological sequestration of carbon dioxide[R]. London, UK: Department of Trade and Industry, 2003. |
| [31] | DUNCAN Ian, WANG Hui. Evaluating the likelihood of pipeline failures for future offshore CO2 sequestration projects[J]. International Journal of Greenhouse Gas Control, 2014, 24: 124-138. |
| [32] | YI Jiahuan, MARTYNOV Sergey, MAHGEREFTEH Haroun. Puncture failure size probability distribution for CO2 pipelines[J]. International Journal of Greenhouse Gas Control, 2023, 125: 103889. |
| [33] | 张锦伟, 姚安林, 范小霞, 等. 肯特管道风险评价改进算法研究[J]. 石油工业技术监督, 2013, 29(6): 1-4. |
| ZHANG Jinwei, YAO Anlin, FAN Xiaoxia, et al. Research of the improved algorithm of kent pipeline risk assessment[J]. Technology Supervision in Petroleum Industry, 2013, 29(6): 1-4. | |
| [34] | 王辉, 纪翔, 洪亮. 基于优化贝叶斯网络的油气管道失效风险安全评价[J]. 化工安全与环境, 2023, 36(1): 35-40. |
| WANG Hui, JI Xiang, HONG Liang. Safety assessment of failure risk of oil and gas pipeline based on optimized Bayesian network[J]. Chemical Safety & Environment, 2023, 36(1): 35-40. | |
| [35] | 王冲. 基于模糊事故树的输气管道风险评价方法及对策研究[D]. 青岛: 中国石油大学(华东), 2019. |
| WANG Chong. Research on risk assessment method and countermeasure of gas pipeline based on fuzzy fault tree[D]. Qingdao: China University of Petroleum (East China), 2019. | |
| [36] | 王文和, 董传富, 刘林精, 等. 基于贝叶斯网络的城市地下燃气管网动态风险分析[J]. 中国安全生产科学技术, 2019, 15(5): 55-62. |
| WANG Wenhe, DONG Chuanfu, LIU Linjing, et al. Dynamic risk analysis of urban buried gas pipeline network based on Bayesian network[J]. Journal of Safety Science and Technology, 2019, 15(5): 55-62. | |
| [37] | MCQUAID J. Some experiments on stably-stratified shear flows[J]. Letters in Heat and Mass Transfer, 1976, 3(6): 485-490. |
| [38] | DIXON C M, GANT S E, OBIORAH C, et al. Validation of dispersion models for high pressure carbon dioxide releases[J]. Symposium Series No. 158, 2012. |
| [39] | HANNA Steven R, CHANG Joseph C. Use of the Kit Fox field data to analyze dense gas dispersion modeling issues[J]. Atmospheric Environment, 2001, 35(13): 2231-2242. |
| [40] | SHANG Yan, CHEN Xiaoling, YANG Ming, et al. Comprehensive review on leakage characteristics and diffusion laws of carbon dioxide pipelines[J]. Energy & Fuels, 2024, 38(12): 10456-10493. |
| [41] | WITLOX Henk W M, HARPER Mike, Adeyemi OKE, et al. Phast validation of discharge and atmospheric dispersion for pressurised carbon dioxide releases[J]. Journal of Loss Prevention in the Process Industries, 2014, 30: 243-255. |
| [42] | AHMAD Mohammad, LOWESMITH Barbara, DE KOEIJER Gelein, et al. COSHER joint industry project: Large scale pipeline rupture tests to study CO2 release and dispersion[J]. International Journal of Greenhouse Gas Control, 2015, 37: 340-353. |
| [43] | WOOLLEY Robert M, FAIRWEATHER Michael, WAREING Christopher J, et al. CO2PipeHaz: Quantitative hazard assessment for next generation CO2 pipelines[J]. Energy Procedia, 2014, 63: 2510-2529. |
| [44] | MARTYNOV Sergey, BROWN Solomon, MAHGEREFTEH Haroun, et al. Modelling three-phase releases of carbon dioxide from high-pressure pipelines[J]. Process Safety and Environmental Protection, 2014, 92(1): 36-46. |
| [45] | WOOLLEY Robert M, FAIRWEATHER Michael, WAREING Christopher J, et al. Measurement and modelling of the near-field structure of large-scale sonic CO2 releases from pipelines[J]. Computer Aided Chemical Engineering, 2014, 33: 919-924. |
| [46] | BARNETT Julian, COOPER Russell. The COOLTRANS research programme: Learning for the design of CO2 pipelines[C]//Volume 1: Design and Construction; Environment; Pipeline Automation and Measurement. Calgary, Alberta, Canada: American Society of Mechanical Engineers, 2014: V001T03A022. |
| [47] | ALLASON D, ARMSTRONG K, DENTON G. Experimental studies of the behaviour of pressurised releases of carbon dioxide[J]. Symposium No. 158, 2012. |
| [48] | 朱国承, 曹琦, 王萌, 等. 超临界CO2管道泄漏扩散风险分析[J]. 安全与环境学报, 2022, 22(3): 1486-1494. |
| ZHU Guocheng, CAO Qi, WANG Meng, et al. Risk analysis of supercritical CO2 release and diffusion[J]. Journal of Safety and Environment, 2022, 22(3): 1486-1494. | |
| [49] | 刘少荣. 高压CO2管道泄漏风险实验研究[D]. 大连: 大连理工大学, 2019. |
| LIU Shaorong. Experimental study on leakage risk of high-pressure CO2 pipeline[D]. Dalian: Dalian University of Technology, 2019. | |
| [50] | 郭晓璐. CO2管道泄漏中介质压力响应、相态变化和扩散特性研究[D]. 大连: 大连理工大学, 2017. |
| GUO Xiaolu. Study on pressure response, phase change and diffusion characteristics of medium in CO2 pipeline leakage[D]. Dalian: Dalian University of Technology, 2017. | |
| [51] | 陈霖. CO2管道介质泄漏体积分数分布及危险区域实验[J]. 油气储运, 2017, 36(10): 1162-1167. |
| CHEN Lin. Experiment on the medium volume fraction distribution and hazardous area in the case of CO2 pipeline leakage[J]. Oil & Gas Storage and Transportation, 2017, 36(10): 1162-1167. | |
| [52] | MAZZOLDI Alberto, HILL Tim, COLLS Jeremy J. CFD and Gaussian atmospheric dispersion models: A comparison for leak from carbon dioxide transportation and storage facilities[J]. Atmospheric Environment, 2008, 42(34): 8046-8054. |
| [53] | CLEAVER P, HALFORD A, COATES T, et al. Modelling releases of carbon dioxide from buried pipelines[C]//Hazards 25. Symposium Series No 160. UK: IChemE, 2015. |
| [54] | 彭凯. LPG道路运输泄漏致灾情景模拟分析——以温岭“6·13”重大爆炸事故为例[D]. 舟山: 浙江海洋大学, 2024. |
| PENG Kai. Simulation analysis of LPG road transport leakage disaster scenario: A case study of the “6·13” major explosion accident in Wenling[D]. Zhoushan: Zhejiang Ocean University, 2024. | |
| [55] | 张对红, 李玉星. 中国超临界CO2管道输送技术进展及展望[J]. 油气储运, 2024, 43(5): 481-491. |
| ZHANG Duihong, LI Yuxing. Development and prospect of supercritical CO2 pipeline transmission technologyin China[J]. Oil & Gas Storage and Transportation, 2024, 43(5): 481-491. | |
| [56] | WITLOX H W M, HOLT A. A unified model for jet, heavy and passive dispersion including droplet rainout and re-evaporation[C]//CCPS 1999. London, UK: Det Norske Veritas, 1999. |
| [57] | TAMBURINI Federica, ZANOBETTI Francesco, CIPOLLETTA Mariasole, et al. State of the art in the quantitative risk assessment of the CCS value chain[J]. Process Safety and Environmental Protection, 2024, 191: 2044-2063. |
| [58] | WITLOX Henk W M, STENE Jan, HARPER Mike, et al. Modelling of discharge and atmospheric dispersion for carbon dioxide releases including sensitivity analysis for wide range of scenarios[J]. Energy Procedia, 2011, 4: 2253-2260. |
| [59] | 陈波. 基于PHAST软件的CO2管道泄漏扩散定量模拟分析[J]. 石油石化节能与计量, 2024, 14(11): 63-68. |
| CHEN Bo. Quantitative simulation analysis of CO2 pipeline leakage and diffusion based on PHAST software[J]. Energy Conservation and Measurement in Petroleum & Petrochemical Industry, 2024, 14(11): 63-68. | |
| [60] | BIELKA Paweł, Szymon KUCZYŃSKI, Tomasz WŁODEK, et al. Risks and safety of CO2 pipeline transport: A case study of the analysis and modeling of the risk of accidental release of CO2 into the atmosphere[J]. Energies, 2024, 17(16): 3943. |
| [61] | 石朝克, 晁鹏举, 赵鹏, 等. 基于FLUENT的油罐区池火灾事故数值模拟研究[J]. 化工安全与环境, 2024, 37(9): 82-85. |
| SHI Chaoke, CHAO Pengju, ZHAO Peng, et al. Study on numerical simulation of tank fire accident based on FLUENT[J]. Chemical Safety & Environment, 2024, 37(9): 82-85. | |
| [62] | 陈兵, 康庆华, 肖红亮. 含杂质CO2管道输送泄漏扩散的数值模拟[J]. 安全与环境工程, 2019, 26(3): 95-100. |
| CHEN Bing, KANG Qinghua, XIAO Hongliang. Numerical simulation of impurity CO2 leakage and diffusion during pipeline transportation[J]. Safety and Environmental Engineering, 2019, 26(3): 95-100. | |
| [63] | ZHANG Xinyin, XU Chuanlong, WANG Shimin, et al. Numerical simulation of the leakage and diffusion of CO2 in CCS transportation pipelines[J]. AIP Conference Proceedings, 2014, 1592(1): 155-166. |
| [64] | 李紫轮. 复杂条件下高压二氧化碳管道安全特性研究[D]. 石家庄: 石家庄铁道大学, 2023. |
| LI Zilun. Study on safety characteristics of high-pressure carbon dioxide pipeline under complex conditions[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2023. | |
| [65] | NYBORG M, ARVIDSSON K, JOHANSSON J, et al. Risk analysis methodology for CO2 transport including quantified risk calculation[J]. Energy Procedia, 2011, 4: 2816-2823. |
| [66] | WAREING Christopher J, FAIRWEATHER Michael, FALLE Samuel A E G, et al. High pressure CO2 CCS pipelines: Comparing dispersion models with multiple experimental datasets[J]. International Journal of Greenhouse Gas Control, 2016, 54: 716-726. |
| [67] | WANG Yifei, HU Qihui, ZHAO Xuefeng, et al. Supercritical/dense-phase CO2 pipeline leakage diffusion experiment and hazard distance prediction method[J]. Journal of Pipeline Science and Engineering, 2025, 5(2): 100248. |
| [68] | 孟凡鹏, 远双杰, 安永胜, 等. 改进的高斯扩散模型在CO2泄漏安全风险评估中的应用[J]. 安全与环境学报, 2024, 24(12): 4820-4825. |
| MENG Fanpeng, YUAN Shuangjie, AN Yongsheng, et al. Application of an enhanced Gaussian diffusion model in the safety risk assessment of CO2 leakage[J]. Journal of Safety and Environment, 2024, 24(12): 4820-4825. | |
| [69] | CAO Zhangao, HU Yanwei, CHEN Lei, et al. Experimental study of leakage characteristics and risk prediction of N2-containing dense-phase CO2 pipelines in real transportation conditions[J]. Process Safety and Environmental Protection, 2024, 187: 1112-1125. |
| [70] | 王春妮, 李健, 白真权, 等. 油气输送管道失效分析技术现状及研究进展[J]. 石油管材与仪器, 2024, 10(1): 1-8. |
| WANG Chunni, LI Jian, BAI Zhenquan, et al. Research progress in failure analysis technology for oil and gas transmission pipelines[J]. Petroleum Tubular Goods & Instruments, 2024, 10(1): 1-8. | |
| [71] | 陈雪锋. 天然气长输管道定量风险评价方法及其应用研究[D]. 北京: 北京科技大学, 2020. |
| CHEN Xuefeng. Study on quantitative risk analysis method and its application in long-distance natural gas pipeline[D]. Beijing: University of Science and Technology Beijing, 2020. | |
| [72] | 叶天宇. 基于模糊综合评价法的天然气管道风险评价研究[D]. 上海: 上海交通大学, 2017. |
| YE Tianyu. Study on risk assessment of natural gas pipeline based on fuzzy comprehensive evaluation method[D]. Shanghai: Shanghai Jiao Tong University, 2017. | |
| [73] | 苗婷婷. 长输油气管道风险评价及失效后果模拟方法研究[D]. 大庆: 东北石油大学, 2015. |
| MIAO Tingting. Study on risk assessment and failure consequence simulation method of long-distance oil and gas pipeline[D]. Daqing: Northeast Petroleum University, 2015. | |
| [74] | 马健彰. 天然气长输管道不同孔径泄漏定量风险评估研究[D]. 北京: 中国石油大学(北京), 2023. |
| MA Jianzhang. Study on quantitative risk assessment of long-distance natural gas pipeline leakage with different apertures[D]. Beijing: China University of Petroleum (Beijing), 2023. | |
| [75] | DUGUID Andrew, HAWKINS Jared, KEISTER Laura. CO2 Pipeline risk assessment and comparison for the midcontinent United States[J]. International Journal of Greenhouse Gas Control, 2022, 116: 103636. |
| [76] | LI Chiyang, MARQUEZ Jazmine Aiya D, HU Pingfan, et al. CO2 pipelines release and dispersion: A review[J]. Journal of Loss Prevention in the Process Industries, 2023, 85: 105177. |
| [77] | MCGILLIVRAY Alison, Ju Lynne SAW, LISBONA Diego, et al. A risk assessment methodology for high pressure CO2 pipelines using integral consequence modelling[J]. Process Safety and Environmental Protection, 2014, 92(1): 17-26. |
| [78] | LISBONA Diego, MCGILLIVRAY Alison, Ju Lynne SAW, et al. Risk assessment methodology for high-pressure CO2 pipelines incorporating topography[J]. Process Safety and Environmental Protection, 2014, 92(1): 27-35. |
| [79] | 吴策宇, 张武涛, 刘天杰, 等. CCUS工程中二氧化碳输送管道的HALOPA分析研究[J]. 石油化工自动化, 2024, 60(2): 59-65. |
| WU Ceyu, ZHANG Wutao, LIU Tianjie, et al. HALOPA analysis study on carbon dioxide transportation pipeline in CCUS project[J]. Automation in Petro-Chemical Industry, 2024, 60(2): 59-65. | |
| [80] | AL-YAEESHI Ali Attiq, GOVINDAN Rajesh, Tareq AL-ANSARI. Quantitative risk assessment and management for CO2 utilisation industrial network[J]. Computer Aided Chemical Engineering, 2024, 48: 1909-1914. |
| [81] | Angunn ENGEBØ, AHMED Nada, GARSTAD Jens J, et al. Risk assessment and management for CO2 capture and transport facilities[J]. Energy Procedia, 2013, 37: 2783-2793. |
| [82] | 杨冰雪, 杨洪斌. 掺氢压力管道智能化检测模型的研究与应用前景[J]. 中国特种设备安全, 2025, 41(2): 86-91. |
| YANG Bingxue, YANG Hongbin. Research and application prospects of intelligent detection model in hydrogen-blended pressure pipeline inspection[J]. China Special Equipment Safety, 2025, 41(2): 86-91. |
| [1] | 张继达, 袁君, 乔红斌, 王金海, 杨俊辉, 蔡振义, 马中成. 多源瓦斯安全混合蓄热氧化余热利用技术[J]. 化工进展, 2025, 44(S1): 102-111. |
| [2] | 武锦怡, 赵睿恺, 邓帅, 张家麒, 高春霄, 刘葳桦, 赵力. 混合绝缘气体变温吸附分离回收SF6的数值模拟[J]. 化工进展, 2025, 44(S1): 19-28. |
| [3] | 龚程程, 章立标, 韩伟达. 超低温螺杆冷冻水机组干式蒸发器换热管制冷剂不均匀度分析及优化[J]. 化工进展, 2025, 44(S1): 38-50. |
| [4] | 刘克峰, 董卫刚, 胡雪生, 刘陶然, 周华群, 时文, 万子岸, 高飞. 推动二氧化碳捕集、输送、应用和封存发展的政策和举措[J]. 化工进展, 2025, 44(9): 4879-4897. |
| [5] | 周敬皓, 张朝阳, 胡昊星, 王思茗, 刘静远, 魏光华. 基于格子玻尔兹曼方法的PEMFC微孔层气体传质分析[J]. 化工进展, 2025, 44(9): 4898-4907. |
| [6] | 薛姿杰, 吴艳, 崔子元, 许关欣, 唐硕, 王彧斐, 马明燕. 基于经济性分析的长周期绿氨合成模型:考虑网电碳排放因子连续变化的影响[J]. 化工进展, 2025, 44(9): 4917-4927. |
| [7] | 王吉龙, 何磊, 苏毅, 唐昭帆. 基于尾气焚烧炉膛天然气无焰燃烧(MILD)数值模拟[J]. 化工进展, 2025, 44(9): 4928-4936. |
| [8] | 吴子锋, 王红娟, 王浩帆, 曹永海, 余皓, 彭峰. 电合成碳酸二甲酯的研究进展[J]. 化工进展, 2025, 44(9): 5033-5042. |
| [9] | 段先哲, 毕文婷, 李南, 豆佳乐, 邵冰清, 汪佳伟, 吴鹏, 黄欢, 唐振平. 数值模拟在高放废物处置中的应用:放射性核素迁移机制及其影响因素[J]. 化工进展, 2025, 44(9): 5391-5405. |
| [10] | 张光辉, 江金旭, 黄磊, 陈士祥, 马天添. 市政污泥富氧燃烧特性影响因素分析及预测[J]. 化工进展, 2025, 44(9): 5460-5470. |
| [11] | 郑钦升, 张朝晖, 邢相栋, 折媛, 李嘉雨. CH3COOH/H2O2浸取体系下钢渣钙组分浸出机制[J]. 化工进展, 2025, 44(9): 5471-5478. |
| [12] | 黄可儿, 刘佳豪, 李昊明, 周天航, 高金森, 蓝兴英. 基于分子动力学模拟的胺溶剂碳捕集过程自扩散系数[J]. 化工进展, 2025, 44(8): 4352-4364. |
| [13] | 李卡, 夏宇轩, 吴晓琴, 易兰, 罗浩. 双层多孔介质燃烧反应器的孔隙尺度计算流体动力学模拟[J]. 化工进展, 2025, 44(8): 4381-4393. |
| [14] | 李增, 赵云鹏, 李宇慧, 柳楠, 朱春梦, 石孝刚, 高金森, 蓝兴英. 基于CFD模拟的催化裂化沉降器跑剂异常诊断[J]. 化工进展, 2025, 44(8): 4430-4442. |
| [15] | 王兆霖, 张志刚, 周静, 高琛, 彭克臣, 姜敏迪, 奚溪, 徐胜利, 刘红. Gyroid三周期极小曲面换热构件流动换热特性[J]. 化工进展, 2025, 44(8): 4454-4462. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |