化工进展 ›› 2025, Vol. 44 ›› Issue (12): 7075-7085.DOI: 10.16085/j.issn.1000-6613.2024-1904
• 材料科学与技术 • 上一篇
蒋春源1,2(
), 沈瀚林3, 张欣蕊1,2, 田锦盛2, 陈青青2, 李因文1,2(
)
收稿日期:2024-11-18
修回日期:2025-02-26
出版日期:2025-12-25
发布日期:2026-01-06
通讯作者:
李因文
作者简介:蒋春源(1997—),男,硕士研究生,研究方向表界面化学与功能材料。E-mail:Jchunyuan1229@163.com。
基金资助:
JIANG Chunyuan1,2(
), SHEN Hanlin3, ZHANG Xinrui1,2, TIAN Jinsheng2, CHEN Qingqing2, LI Yinwen1,2(
)
Received:2024-11-18
Revised:2025-02-26
Online:2025-12-25
Published:2026-01-06
Contact:
LI Yinwen
摘要:
为改善乳液型聚丙烯酸酯压敏胶的剥离强度,从天然黏附系统角度,以丙烯酸丁酯(BA)、丙烯酸异辛酯(EHA)、甲基丙烯酸甲酯(MMA)、丙烯酸(AA)、丙烯酸羟乙酯(HEA)为原料通过半连续乳液聚合制备了聚丙烯酸酯乳液压敏胶(PSA),并利用具有类似生物多酚的结构3,4-二羟基苯甲醛(DHBA)为改性功能单体进行接枝交联改性,合成了具有高剥离强度无残胶的聚丙烯酸酯乳液压敏胶(HPSA),详细探讨了DHBA、乳化剂、引发剂及HEA用量对HPSA黏结性能、黏度及剥离后残胶的影响。结果表明:当DHBA用量为4.0%(以软硬单体总质量计,下同)、乳化剂用量1.4%、引发剂用量0.5%以及HEA用量3.0%时,HPSA的综合性能最佳,180°剥离强度为8.27N/25mm,环形初黏力为5.75N,持黏时间>72h,且镜面板上无残胶,因而具有良好的应用前景。
中图分类号:
蒋春源, 沈瀚林, 张欣蕊, 田锦盛, 陈青青, 李因文. 高剥离强度聚丙烯酸酯乳液压敏胶制备与性能[J]. 化工进展, 2025, 44(12): 7075-7085.
JIANG Chunyuan, SHEN Hanlin, ZHANG Xinrui, TIAN Jinsheng, CHEN Qingqing, LI Yinwen. Preparation and properties of polyacrylate latex pressure-sensitive adhesive with high peel strength[J]. Chemical Industry and Engineering Progress, 2025, 44(12): 7075-7085.
| 样品 | 黏度/mPa·s | 初黏力/N | 持黏时间/h | 剥离强度/N | DHBA/% |
|---|---|---|---|---|---|
| PSAs | 145.7 | 2.21 | ≈8h | 4.42 | 0 |
| dPSA1 | 144.2 | 3.41 | ≈10h | 4.29 | 1.0 |
| dPSA2 | 116.4 | 3.34 | ≈48h | 5.81 | 2.0 |
| dPSA3 | 117.5 | 4.16 | >72h | 8.78 | 3.0 |
| dPSA4 | 114.5 | 5.75 | >72h | 8.27 | 4.0 |
| dPSA5 | 102.3 | 3.53 | >72h | 6.46 | 5.0 |
表1 不同含量DHBA对dPSA的影响
| 样品 | 黏度/mPa·s | 初黏力/N | 持黏时间/h | 剥离强度/N | DHBA/% |
|---|---|---|---|---|---|
| PSAs | 145.7 | 2.21 | ≈8h | 4.42 | 0 |
| dPSA1 | 144.2 | 3.41 | ≈10h | 4.29 | 1.0 |
| dPSA2 | 116.4 | 3.34 | ≈48h | 5.81 | 2.0 |
| dPSA3 | 117.5 | 4.16 | >72h | 8.78 | 3.0 |
| dPSA4 | 114.5 | 5.75 | >72h | 8.27 | 4.0 |
| dPSA5 | 102.3 | 3.53 | >72h | 6.46 | 5.0 |
| 样品 | 黏度/mPa·s | 初黏力/N | 持黏时间/h | 剥离强度/N | APS/% |
|---|---|---|---|---|---|
| aPSA1 | 86.3 | 1.32 | ≈8h | 2.39 | 0.1 |
| aPSA2 | 100.2 | 2.45 | ≈10h | 4.47 | 0.3 |
| aPSA3 | 121.7 | 3.47 | >72h | 7.25 | 0.5 |
| aPSA4 | 136.5 | 4.52 | >72h | 5.79 | 0.7 |
| aPSA5 | 153.4 | 3.13 | ≈10h | 4.09 | 0.9 |
表2 APS含量对aPSA的影响
| 样品 | 黏度/mPa·s | 初黏力/N | 持黏时间/h | 剥离强度/N | APS/% |
|---|---|---|---|---|---|
| aPSA1 | 86.3 | 1.32 | ≈8h | 2.39 | 0.1 |
| aPSA2 | 100.2 | 2.45 | ≈10h | 4.47 | 0.3 |
| aPSA3 | 121.7 | 3.47 | >72h | 7.25 | 0.5 |
| aPSA4 | 136.5 | 4.52 | >72h | 5.79 | 0.7 |
| aPSA5 | 153.4 | 3.13 | ≈10h | 4.09 | 0.9 |
| 样品 | 黏度/mPa·s | 初黏力/N | 持黏时间/h | 剥离强度/N | CO436/% |
|---|---|---|---|---|---|
| cPSA1 | 98.6 | 2.92 | ≈4h | 3.60 | 1.0 |
| cPSA2 | 108.3 | 3.14 | ≈8h | 5.31 | 1.2 |
| cPSA3 | 119.7 | 4.32 | >72h | 7.44 | 1.4 |
| cPSA4 | 145.3 | 5.41 | >72h | 6.46 | 1.6 |
| cPSA5 | 229.7 | 3.53 | ≈10h | 5.22 | 1.8 |
表3 乳化剂含量对cPSA的影响
| 样品 | 黏度/mPa·s | 初黏力/N | 持黏时间/h | 剥离强度/N | CO436/% |
|---|---|---|---|---|---|
| cPSA1 | 98.6 | 2.92 | ≈4h | 3.60 | 1.0 |
| cPSA2 | 108.3 | 3.14 | ≈8h | 5.31 | 1.2 |
| cPSA3 | 119.7 | 4.32 | >72h | 7.44 | 1.4 |
| cPSA4 | 145.3 | 5.41 | >72h | 6.46 | 1.6 |
| cPSA5 | 229.7 | 3.53 | ≈10h | 5.22 | 1.8 |
| 样品 | 黏度/mPa·s | 初黏力/N | 持黏时间/h | 剥离强度/N | HEA/% |
|---|---|---|---|---|---|
| tPSA1 | 213.3 | 2.92 | ≈8h | 2.91 | 1.0 |
| tPSA2 | 112.3 | 3.14 | ≈10h | 4.84 | 2.0 |
| tPSA3 | 121.7 | 4.91 | >72h | 7.65 | 3.0 |
| tPSA4 | 245.5 | 4.32 | ≈48h | 6.31 | 4.0 |
| tPSA5 | 281.3 | 3.53 | ≈4h | 4.28 | 5.0 |
表4 HEA含量对tPSA的影响
| 样品 | 黏度/mPa·s | 初黏力/N | 持黏时间/h | 剥离强度/N | HEA/% |
|---|---|---|---|---|---|
| tPSA1 | 213.3 | 2.92 | ≈8h | 2.91 | 1.0 |
| tPSA2 | 112.3 | 3.14 | ≈10h | 4.84 | 2.0 |
| tPSA3 | 121.7 | 4.91 | >72h | 7.65 | 3.0 |
| tPSA4 | 245.5 | 4.32 | ≈48h | 6.31 | 4.0 |
| tPSA5 | 281.3 | 3.53 | ≈4h | 4.28 | 5.0 |
| [1] | 房成, 王威, 韦丽芬, 等. 高固含量丙烯酸酯乳液压敏胶的制备及性能[J]. 精细化工, 2021, 38(4): 853-859. |
| FANG Cheng, WANG Wei, WEI Lifen, et al. Preparation and properties of acrylate emulsion pressure sensitive adhesive with high solid content[J]. Fine Chemicals, 2021, 38(4): 853-859. | |
| [2] | 王贝贝, 曹盛, 崔傲, 等. 丙烯酸酯压敏胶的制备及性能研究[J]. 中国胶黏剂, 2023, 32(10): 48-52. |
| WANG Beibei, CAO Sheng, CUI Ao, et al. Study on the preparation and properties of acrylate pressure sensitive adhesive[J]. China Adhesives, 2023, 32(10): 48-52. | |
| [3] | SCHILLING M L, COLVIN V L, DHAR L, et al. Acrylate oligomer-based photopolymers for optical storage applications[J]. Chemistry of Materials, 1999, 11(2): 247-254. |
| [4] | WANG Gang, ZHOU Zhengxiang, CHEN Mengyu, et al. UV-curable polyurethane acrylate pressure-sensitive adhesives with high optical clarity for full lamination of TFT-LCD[J]. ACS Applied Polymer Materials, 2023, 5(3): 2051-2061. |
| [5] | SEOK Woong Cheol, LEEM Jong Tae, SONG Ho Jun. The effect of silane acrylate containing ethylene glycol chains on the adhesive performance and viscoelastic behavior of acrylic pressure-sensitive adhesives for flexible displays[J]. Polymers, 2023, 15(17): 3601. |
| [6] | KHALINA Morteza, SANEI Mahmood, MOBARAKEH Hamid Salehi, et al. Preparation of acrylic/silica nanocomposites latexes with potential application in pressure sensitive adhesive[J]. International Journal of Adhesion and Adhesives, 2015, 58: 21-27. |
| [7] | 罗丹, 王志政, 张耘瑞, 等. 耐暗影水性聚丙烯酸酯乳液压敏胶黏剂的制备[J]. 精细化工, 2025, 42(1): 215-223. |
| LUO Dan, WANG Zhizheng, ZHANG Yunrui, et al. Preparation of Shadow-resistant Waterborne Polyacrylate Emulsion pressure sensitive adhesives[J]. China Industrial Economics, 2025, 42(1): 215-223. | |
| [8] | 田莹, 乔永洛, 申亮. 木器用多重交联羟基丙烯酸酯乳液的制备与应用研究[J]. 涂料工业, 2019, 49(7): 53-58. |
| TIAN Ying, QIAO Yongluo, SHEN Liang. Preparation and application of multi-crosslinking hydroxyl acrylate latex for wood varnish[J]. Paint & Coatings Industry, 2019, 49(7): 53-58. | |
| [9] | Vishnu PRADEEP S, KANDASUBRAMANIAN Balasubramanian, SIDHARTH Sumati. A review on recent trends in bio-based pressure sensitive adhesives[J]. The Journal of Adhesion, 2023, 99(14): 2145-2166. |
| [10] | 尉晓丽, 傅和青. 改性水性丙烯酸酯压敏胶研究进展[J]. 化工进展, 2012, 31(1): 176-184. |
| WEI Xiaoli, FU Heqing. Progress in modification of waterborne acrylate pressure-sensitive adhesive[J]. Chemical Industry and Engineering Progress, 2012, 31(1): 176-184. | |
| [11] | HERMENS Johannes G H, FREESE Thomas, VAN DEN BERG Keimpe J, et al. A coating from nature[J]. Science Advances, 2020, 6(51): eabe0026. |
| [12] | DROESBEKE Martijn A, AKSAKAL Resat, SIMULA Alexandre, et al. Biobased acrylic pressure-sensitive adhesives[J]. Progress in Polymer Science, 2021, 117: 101396. |
| [13] | CASAS-SOTO Carlos Rafael, CONEJO-DÁVILA Alain Salvador, OSUNA Velia, et al. Dibutyl itaconate and lauryl methacrylate copolymers by emulsion polymerization for development of sustainable pressure-sensitive adhesives[J]. Polymers, 2022, 14(3): 632. |
| [14] | Recent progress of mussel-inspired underwater adhesives[J]. Chinese Journal of Chemistry, 2017, 35(6): 811-820. |
| [15] | Brylee David B TIU, DELPARASTAN Peyman, NEY Max R, et al. Enhanced adhesion and cohesion of bioinspired dry/wet pressure-sensitive adhesives[J]. ACS Applied Materials & Interfaces, 2019, 11(31): 28296-28306. |
| [16] | YU Guofei, DAN Nianhua, DAN Weihua, et al. Wearable tissue adhesive ternary hydrogel of N-(2-hydroxyl)propyl-3-trimethyl ammonium chitosan, tannic acid, and polyacrylamide[J]. Industrial & Engineering Chemistry Research, 2022, 61(16): 5502-5513. |
| [17] | JU Yi, WANG Junjie, LEI Yang, et al. A dry double-sided tape post-treated with tannic acid for long-term adhesion in a wet environment[J]. Journal of Materials Chemistry B, 2024, 12(33): 8142-8152. |
| [18] | DENG Xueliang, LI Dangwei, CHEN Lemin, et al. Preparation and properties of biocompatible and injectable hydrogels for bladder cancer drug delivery[J]. New Journal of Chemistry, 2023, 47(36): 16835-16842. |
| [19] | DEL GROSSO Chelsey A, LENG Chuan, ZHANG Kexin, et al. Surface hydration for antifouling and bio-adhesion[J]. Chemical Science, 2020, 11(38): 10367-10377. |
| [20] | LI Yonghui, SUN Xiuzhi Susan. Synthesis and characterization of acrylic polyols and polymers from soybean oils for pressure-sensitive adhesives[J]. RSC Advances, 2015, 5(55): 44009-44017. |
| [21] | 全晴晴, 黄毅萍, 鲍俊杰, 等. 叔丁基环己基丙烯酸酯改性聚丙烯酸酯水分散体研究[J]. 热固性树脂, 2024, 39(2): 52-57. |
| QUAN Qingqing, HUANG Yiping, BAO Junjie, et al. Study on tert-butylcyclohexyl acrylate modified polyacrylate aqueous dispersion[J]. Thermosetting Resin, 2024, 39(2): 52-57. | |
| [22] | FAN Hailong, WANG Jiahui, ZHANG Qiuya, et al. Tannic acid-based multifunctional hydrogels with facile adjustable adhesion and cohesion contributed by polyphenol supramolecular chemistry[J]. ACS Omega, 2017, 2(10): 6668-6676. |
| [23] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
| ZHANG Ao, LUO Yingwu. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives[J]. CIESC Journal, 2023, 74(7): 3079-3092. | |
| [24] | LIU Xin, ZHANG Qin, GAO Zijian, et al. Bioinspired adhesive hydrogel driven by adenine and thymine[J]. ACS Applied Materials & Interfaces, 2017, 9(20): 17645-17652. |
| [25] | 高文枢, 李程, 李建武, 等. 不同交联层厚度的聚丙烯酸酯乳液的制备及压敏性能[J]. 高分子材料科学与工程, 2019, 35(12): 16-21. |
| GAO Wenshu, LI Cheng, LI Jianwu, et al. Preparation and properties of polyacrylic pressure-sensitive adhesives with different crosslinking layer thicknesses[J]. Polymer Materials Science & Engineering, 2019, 35(12): 16-21. | |
| [26] | ZHENG Xiangrui, NIE Wenjian, GUO Yafang, et al. Influence of chain stiffness on the segmental dynamics and mechanical properties of cross-linked polymers[J]. Macromolecules, 2023, 56(18): 7636-7650. |
| [27] | ZHENG Xiangrui, GUO Yafang, DOUGLAS Jack F, et al. Understanding the role of cross-link density in the segmental dynamics and elastic properties of cross-linked thermosets[J]. Journal of Chemical Physics, 2022, 157(6): 064901. |
| [28] | YILDIZ Zehra, GUNGOR Atilla, ONEN Aysen, et al. Synthesis and characterization of dual-curable epoxyacrylates for polyester cord/rubber applications[J]. Journal of Industrial Textiles, 2016, 46(2): 596-610. |
| [29] | ZHU Zhewen, ZHANG Chaoying, GONG Shuling. Preparation and properties of polyester modified waterborne high hydroxyl content and high solid content polyacrylate emulsion[J]. Polymers, 2019, 11(4): 636. |
| [30] | LI Pengjuan, NIAN Fuwei, ZHANG Min, et al. Siloxane-modified polyacrylate low-residual pressure-sensitive adhesive with high peeling strength[J]. Journal of Applied Polymer Science, 2016, 133(8): 42975. |
| [31] | GUO Mengxue, LI Gang, CAI Minkun, et al. A tough hydrogel adhesive for the repair of archeological pottery[J]. Nano Letters, 2023, 23(4): 1371-1378. |
| [32] | 宗雅君, 房成, 林中祥. 环保型可聚合乳化剂在丙烯酸酯乳液压敏胶中的应用[J]. 精细化工, 2016, 33(11): 1308-1314. |
| ZONG Yajun, FANG Cheng, LIN Zhongxiang. Application of environmentfriendly polymeric emulsifiers in acrylate emulsion pressure-sensitive adhesives[J]. Fine Chemicals, 2016, 33(11): 1308-1314. | |
| [33] | LIU Hong, QIAO Yongluo, HAN Lu, et al. Study on peelable performance of polyacrylate pressure sensitive adhesive[J]. Paint & Coatings Industry, 2016, 46(11): 19-24. |
| [34] | 黄云, 郑琛, 李浩. 乳液型丙烯酸压敏胶的研究及应用进展[J]. 化工技术与开发, 2024, 53(9): 59-64. |
| HUANG Yun, ZHENG Chen, LI Hao. Research and application progress of emulsion-type acrylic pressure sensitive adhesive[J]. Technology & Development of Chemical Industry, 2024, 53(9): 59-64. |
| [1] | 马晓彪, 刘晗, 王伟欢, 苗培培, 季莹辉, 陈博阳, 彭晓伟, 许强, 靳凤英, 马明超, 王银斌, 郭春垒. 酸和磷复合改性对ZSM-5分子筛催化裂解性能的影响[J]. 化工进展, 2025, 44(S1): 197-204. |
| [2] | 杜亮亮, 邵杰, 汪超, 宋俊达, 程尧, 开元, 胡超. 沥青基钠离子电池负极材料研究进展[J]. 化工进展, 2025, 44(S1): 307-322. |
| [3] | 翟恒艳, 金宇凡, 黎水涵, 尹衍军, 王季平, 贾献峰. 轻质碳纤维/酚醛复合材料的制备与改性研究进展[J]. 化工进展, 2025, 44(S1): 368-387. |
| [4] | 周慕妍, 李凯, 谢征芸, 孙彦琳. 新型多糖基二元流变改性剂在香精油微胶囊悬浮中的应用与性能[J]. 化工进展, 2025, 44(9): 5265-5276. |
| [5] | 张巍, 梁垚城, 伍乔, 付业昊, 尹艳山, 成珊, 阮敏, 刘涛, 周昭仪, 张凯凯, 李丹聪. 基于金属离子改性的Cu-SSZ-13催化剂在NH3-SCR脱硝中的应用[J]. 化工进展, 2025, 44(7): 3879-3891. |
| [6] | 徐茹婷, 赵剑, 孙康, 卢辛成, 蒋剑春, 苏忠高, 刘军利, 陈子标, 苏子寒. 活性炭改性及其对模拟废润滑油的净化性能[J]. 化工进展, 2025, 44(7): 4022-4031. |
| [7] | 孙燕, 陈马超, 田娜, 谢晓阳, 李晓玲, 何皎洁, 赵晓红. 基于β-环糊精的TFC正渗透膜原位构筑及抗污染性能[J]. 化工进展, 2025, 44(6): 3671-3682. |
| [8] | 黄娇, 朱亚明, 岳佳兴, 王莹, 程俊霞, 赵雪飞. 球形活性炭的制备、改性及应用研究进展[J]. 化工进展, 2025, 44(4): 2081-2101. |
| [9] | 张绎如, 韩东梅, 马伟芳. 铁基复合卤氧化铋磁性材料强化可见光催化处理难降解有机废水研究进展[J]. 化工进展, 2025, 44(4): 2258-2273. |
| [10] | 张东旭, 么强, 黑树楠, 李卫东, 刘成, 李志军, 宋乐春, 韩照明. 废塑料改性沥青相容性及性能分析研究进展[J]. 化工进展, 2025, 44(3): 1651-1665. |
| [11] | 李家豪, 范海明, 魏志毅, 程思远. 纳米材料在低渗透油藏中的研究进展及展望[J]. 化工进展, 2025, 44(3): 1485-1495. |
| [12] | 张茂润, 孙伟如, 马天麟, 辛志玲. Mo改性MnCe/SiC低温SCR脱硝催化剂抗SO2中毒性能[J]. 化工进展, 2025, 44(3): 1378-1386. |
| [13] | 王雪莉, 杨卫亚, 张会成, 王少军, 凌凤香. 金属有机框架(MOF)基混合基质膜界面改性方法及其气体分离性能[J]. 化工进展, 2025, 44(2): 928-940. |
| [14] | 刘法志, 张鹏威, 刘涛, 谢玉仙, 何建乐, 苏胜, 徐俊, 向军. Sb改性钒钛SCR脱硝催化剂抗CO中毒性能[J]. 化工进展, 2025, 44(2): 1129-1137. |
| [15] | 罗小平, 贾梦帆, 李世珍. 电场和改性PVDF膜相分离结构协同作用下逆流微细通道压降特性[J]. 化工进展, 2025, 44(2): 646-659. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |