化工进展 ›› 2025, Vol. 44 ›› Issue (11): 6244-6257.DOI: 10.16085/j.issn.1000-6613.2024-1796
• 能源加工与技术 • 上一篇
孙瑞利1(
), 文雅静1, 邓蔡1, 张子楠2(
), 姬峰3, 许新龙4, 陈婷1, 王绍荣1(
)
收稿日期:2024-11-06
修回日期:2025-04-20
出版日期:2025-11-25
发布日期:2025-12-08
通讯作者:
张子楠,王绍荣
作者简介:孙瑞利(1990—),女,博士,讲师,研究方向为聚合物电解质膜燃料电池。E-mail:sunruili@cumt.edu.cn。
基金资助:
SUN Ruili1(
), WEN Yajing1, DENG Cai1, ZHANG Zinan2(
), JI Feng3, XU Xinlong4, CHEN Ting1, WANG Shaorong1(
)
Received:2024-11-06
Revised:2025-04-20
Online:2025-11-25
Published:2025-12-08
Contact:
ZHANG Zinan, WANG Shaorong
摘要:
催化层是聚合物电解质膜燃料电池(PEMFC)的关键组件之一,其性能、寿命和成本与PEMFC商业化息息相关。然而由Pt/C电催化剂和离聚物形成的传统催化层面临传质阻力大、电催化剂利用率低等问题,影响PEMFC性能。本文回顾了近年研究者在降低传质阻力和提高电催化剂利用率方面取得的成就,主要从电子传导“通道”有序化的催化层、质子迁移“通道”有序化的催化层、反应物传递“通道”有序化的催化层等三个方面阐述了有序化物质传递“通道”或三相反应界面区域的研究进展;分析了催化层优化措施的应用优势及关键挑战,并对PEMFC催化层的未来发展进行了展望,指出高效三相反应界面区域的催化层是PEMFC研究重点或热点。
中图分类号:
孙瑞利, 文雅静, 邓蔡, 张子楠, 姬峰, 许新龙, 陈婷, 王绍荣. 聚合物电解质膜燃料电池催化层研究进展[J]. 化工进展, 2025, 44(11): 6244-6257.
SUN Ruili, WEN Yajing, DENG Cai, ZHANG Zinan, JI Feng, XU Xinlong, CHEN Ting, WANG Shaorong. Research progress on catalyst layers for polymer electrolyte membrane fuel cells[J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6244-6257.
| [1] | 衣宝廉, 俞红梅, 侯中军, 等. 氢燃料电池[M]. 北京: 化学工业出版社, 2021: 221. |
| YI Baolian, YU Hongmei, HOU Zhongjun, et al. Hydrogen fuel cell[M]. Beijing: Chemical Industry Press, 2021: 221. | |
| [2] | 中国科学院科技战略咨询研究院. 美国能源部更新氢能和燃料电池多年期计划[EB/OL]. (2024-10-28) [2024-10-29]. . |
| Institutes of Science and Development, Chinese Academy of Sciences. Hydrogen and fuel cell technologies office multi-year program plan[EB/OL]. (2024-10-28) [2024-10-29]. . | |
| [3] | 徐连兵. 我国氢能源利用前景与发展战略研究[J]. 洁净煤技术, 2022, 28(9): 1-10. |
| XU Lianbing. Research on the prospect and development strategy of hydrogen energy in China[J]. Clean Coal Technology, 2022, 28(9): 1-10. | |
| [4] | 赵青, 郑佳. 全球主要国家2019年氢能发展政策概述[J]. 全球科技经济瞭望, 2020, 35(4): 11-20. |
| ZHAO Qing, ZHENG Jia. Overview of hydrogen development policies of major global countries in 2019[J]. Global Science, Technology and Economy Outlook, 2020, 35(4): 11-20. | |
| [5] | 邵志刚, 衣宝廉. 氢能与燃料电池发展现状及展望[J]. 中国科学院院刊, 2019, 34(4): 469-477. |
| SHAO Zhigang, YI Baolian. Development trend and present status of hydrogen energy and fuel cell development[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 469-477. | |
| [6] | 德特勒夫·施托尔滕, 雷姆济·萨姆松, 南希·加兰. 燃料电池: 事实与数据[M]. 赵英汝, 等, 译. 北京: 化学工业出版社, 2021: 311. |
| DETLEF Stolten, Samsun REMZI C., NANCY Garland. Fuel Cells[M]. Beijing: Chemical Industry Press, 2021: 311. | |
| [7] | WANG Yun, RUIZ DIAZ Daniela Fernanda, CHEN Ken S, et al. Materials, technological status, and fundamentals of PEM fuel cells—A review[J]. Materials Today, 2020, 32: 178-203. |
| [8] | JAMES Brian. Fuel cell cost and performance analysis[R/OL]. 2022 DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting Presentation, 2022. . |
| [9] | Office of Energy Efficiency & Renewable Energy for DOE. Hydrogen and Fuel Cell Technologies Office: DOE technical targets for fuel cell systems and stacks[R/OL]. . |
| [10] | 孙瑞利. 多孔电极界面结构及其物质传输迁移过程研究[D]. 北京: 中国科学院大学, 2020. |
| SUN Ruili. Study on interface structure of porous electrode and its material transport and migration process[D]. Beijing: University of Chinese Academy of Sciences, 2020. | |
| [11] | 毛林昌, 金俊宏, 杨胜林, 等. 多孔纳米碳纤维作为质子交换膜燃料电池微孔层的性能[J]. 化工进展, 2020, 39(10): 3995-4001. |
| MAO Linchang, JIN Junhong, YANG Shenglin, et al. Performance of porous carbon nanofibers as microporous layer for proton exchange membrane fuel cells[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 3995-4001. | |
| [12] | 焦道宽, 王睿迪, 张妍懿, 等. 质子交换膜燃料电池气体扩散层产业技术的现状与展望[J]. 电池工业, 2023, 27(6): 301-304. |
| JIAO Daokuan, WANG Ruidi, ZHANG Yanyi, et al. Development status and prospect of gas diffusion layer for proton exchange membrane fuel cells[J]. Chinese Battery Industry, 2023, 27(6): 301-304. | |
| [13] | 沈先河. 原位生长制备具有自由基淬灭层的高稳定性质子交换膜研究[D]. 合肥: 中国科学技术大学, 2023. |
| SHEN Xianhe. High stability proton exchange membrane with free radical quenching layer prepared by in-situ growth method[J]. Hefei: University of Science and Technology of China, 2023. | |
| [14] | KUSOGLU Ahmet, WEBER Adam Z. New insights into perfluorinated sulfonic-acid ionomers[J]. Chemical Reviews, 2017, 117(3): 987-1104. |
| [15] | 高帷韬, 雷一杰, 张勋, 等. 质子交换膜燃料电池研究进展[J]. 化工进展, 2022, 41(3): 1539-1555. |
| GAO Weitao, LEI Yijie, ZHANG Xun, et al. An overview of proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1539-1555. | |
| [16] | Ryan O’HAYRE, BARNETT David M, PRINZ Fritz B. The triple phase boundary[J]. Journal of the Electrochemical Society, 2005, 152(2): A439-A444. |
| [17] | GANGADHARAN Pranav K, VIJAYAKUMAR Vidyanand, NEDIYIRAKKAL Shijil A, et al. In situ preparation of ionomer as a tool for triple-phase boundary enhancement in 3D graphene supported Pt catalyst[J]. Advanced Sustainable Systems, 2021, 5(1): 2000125. |
| [18] | LEE Myoungseok, UCHIDA Makoto, YANO Hiroshi, et al. New evaluation method for the effectiveness of platinum/carbon electrocatalysts under operating conditions[J]. Electrochimica Acta, 2010, 55(28): 8504-8512. |
| [19] | MIDDELMAN Erik. Improved PEM fuel cell electrodes by controlled self-assembly[J]. Fuel Cells Bulletin, 2002, 2002(11): 9-12. |
| [20] | ADAM Weber. FC137-FC-PAD: Electrode layers and optimization[R/OL]. DOE Hydrogen Program: 2017 DOE Fuel Cell Technologies Office Annual Merit Review, 2017. . |
| [21] | 蒋尚峰, 衣宝廉. 有序化膜电极研究进展[J]. 电化学, 2016, 22(3): 213-218. |
| JIANG Shangfeng, YI Baolian. Progress of order-structured membrane electrode assembly[J]. Journal of Electrochemistry, 2016, 22(3): 213-218. | |
| [22] | 李云飞, 王致鹏, 段磊, 等. 质子交换膜燃料电池有序化膜电极研究进展[J]. 化工进展, 2021, 40(S1): 101-110. |
| LI Yunfei, WANG Zhipeng, DUAN Lei, et al. Research progress of ordered membrane electrode assembly for proton exchange membrane fuel cells[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 101-110. | |
| [23] | 李雅丽. 燃料电池中有序膜电极结构调控及其表界面问题研究[D]. 合肥: 中国科学技术大学, 2023. |
| LI Yali. Structural regulation and interfacial investigation of ordered membrane electrodes assembly in fuel cells[D]. Hefei: University of Science and Technology of China, 2023. | |
| [24] | TOOPS Todd Jefferson. Integrated membrane electrode assembly using aligned carbon nanotubules: US 20040224217A1[P]. 2004-11-11. . |
| [25] | LI Wenzhen, WANG Xin, CHEN Zhongwei, et al. Carbon nanotube film by filtration as cathode catalyst support for proton-exchange membrane fuel cell[J]. Langmuir, 2005, 21(21): 9386-9389. |
| [26] | HATANAKA Tatsuya, NAKANISHI Haruyuki, MATSUMOTO Shin-ichi, et al. PEFC electrodes based on vertically oriented carbon nanotubes[J]. ECS Transactions, 2006, 3(1): 277-284. |
| [27] | LIU Dijia, YANG Junbing, KARIUKI Nancy, et al. Performance improvement in PEMFC using aligned carbon nanotubes as electrode catalyst support[J]. ECS Transactions, 2008, 16(2): 1123-1129. |
| [28] | TIAN Zhiqun, San Hua LIM, Chee Kok POH, et al. A highly order-structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra-low Pt loading PEM fuel cells[J]. Advanced Energy Materials, 2011, 1(6): 1205-1214. |
| [29] | TANG Zhe, Chee Kok POH, TIAN Zhiqun, et al. In situ grown carbon nanotubes on carbon paper as integrated gas diffusion and catalyst layer for proton exchange membrane fuel cells[J]. Electrochimica Acta, 2011, 56(11): 4327-4334. |
| [30] | MENG Qinghao, HAO Chao, YAN Bowen, et al. High-performance proton exchange membrane fuel cell with ultra-low loading Pt on vertically aligned carbon nanotubes as integrated catalyst layer[J]. Journal of Energy Chemistry, 2022, 71: 497-506. |
| [31] | SUN Ruili, XIA Zhangxun, SHANG Lei, et al. Hierarchically ordered arrays with platinum coated PANI nanowires for highly efficient fuel cell electrodes[J]. Journal of Materials Chemistry A, 2017, 5(29): 15260-15265. |
| [32] | JIANG Shangfeng, YI Baolian, CAO Longsheng, et al. Development of advanced catalytic layer based on vertically aligned conductive polymer arrays for thin-film fuel cell electrodes[J]. Journal of Power Sources, 2016, 329: 347-354. |
| [33] | BONAKDARPOUR Arman, TUCKER Ryan T, FLEISCHAUER Michael D, et al. Nanopillar niobium oxides as support structures for oxygen reduction electrocatalysts[J]. Electrochimica Acta, 2012, 85: 492-500. |
| [34] | Dong-Ha LIM, LEE Woo-Jin, WHELDON Jess, et al. Electrochemical characterization and durability of sputtered Pt catalysts on TiO2 nanotube arrays as a cathode material for PEFCs[J]. Journal of the Electrochemical Society, 2010, 157(6): B862-B867. |
| [35] | DENG Ruoyi, XIA Zhangxun, SUN Ruili, et al. Nanostructured ultrathin catalyst layer with ordered platinum nanotube arrays for polymer electrolyte membrane fuel cells[J]. Journal of Energy Chemistry, 2020, 43: 33-39. |
| [36] | DEBE Mark K, SCHMOECKEL Alison K, VERNSTROM George D, et al. High voltage stability of nanostructured thin film catalysts for PEM fuel cells[J]. Journal of Power Sources, 2006, 161(2): 1002-1011. |
| [37] | DEBE Mark K. Nanostructured thin film Electrocatalysts for PEM fuel cells—A tutorial on the fundamental characteristics and practical properties of NSTF catalysts[J]. ECS Transactions, 2012, 45(2): 47-68. |
| [38] | DEBE Mark. Tutorial on the fundamental characteristics and practical[J]. Journal of the Electrochemical Society, 2013, 160(6): 522-534. |
| [39] | VAN DER VLIET Dennis F, WANG Chao, TRIPKOVIC Dusan, et al. Mesostructured thin films as electrocatalysts with tunable composition and surface morphology[J]. Nature Materials, 2012, 11(12): 1051-1058. |
| [40] | STEINBACH Andrew. Highly active, durable, and ultra-low PGM NSTF thin film ORR catalysts and supports[R/OL]. DOE 2019 Annual Merit Review and Peer Evaluation Meeting, 2019. . |
| [41] | WANG Kaili, ZHOU Tingting, CAO Zhen, et al. Advanced 3D ordered electrodes for PEMFC applications: From structural features and fabrication methods to the controllable design of catalyst layers[J]. Green Energy & Environment, 2024, 9(9): 1336-1365. |
| [42] | WANG Zhitao, WANG Yuxin, XU Li, et al. Electric field-treated MEAs for improved fuel cell performance[J]. Journal of Power Sources, 2009, 186(2): 293-298. |
| [43] | DONG Bin, GWEE Liang, LA CRUZ David Salas-de, et al. Super proton conductive high-purity nafion nanofibers[J]. Nano Letters, 2010, 10(9): 3785-3790. |
| [44] | SUN Yiyan, CUI Lirui, GONG Jian, et al. Design of a catalytic layer with hierarchical proton transport structure: The role of nafion nanofiber[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 2955-2963. |
| [45] | SUN R, XIA Z, ZHANG Z, et al. Supportless Pt-ionomer hybrid porous nanofibrous networks with self-regulated water management for polymer electrolyte fuel cells[J]. Materials Today Nano, 2022, 18: 100215. |
| [46] | Borup ROD, KARREN More, ADAM Weber. FC135: FC-PAD: Fuel cell performance and durability consortium[R/OL]. 2018 DOE Fuel Cell Technologies Office Annual Merit Review, 2018. . |
| [47] | NING Fandi, QIN Jiaqi, DAN Xiong, et al. Nanosized proton conductor array with high specific surface area improves fuel cell performance at low Pt loading[J]. ACS Nano, 2023, 17(10): 9487-9500. |
| [48] | LIU Yiyang, TIAN Bin, NING Fandi, et al. Hybrid 3D-ordered membrane electrode assembly (MEA) with highly stable structure, enlarged interface, and ultralow Ir loading by doping nano TiO2 nanoparticles for water electrolyzer[J]. Advanced Energy Materials, 2024, 14(10): 2303353. |
| [49] | BAKER Daniel R, CAULK David A, NEYERLIN Kenneth C, et al. Measurement of oxygen transport resistance in PEM fuel cells by limiting current methods[J]. Journal of the Electrochemical Society, 2009, 156 (9): B991-B1003. |
| [50] | GARCÍA-SALABERRI Pablo A, Prodip K DAS, CHAPARRO Antonio M. Local oxygen transport resistance in polymer electrolyte fuel cells: Origin, dependencies and mitigation[J]. Frontiers in Energy Research, 2024, 12: 1357325. |
| [51] | NONOYAMA Nobuaki, OKAZAKI Shinobu, WEBER Adam Z, et al. Analysis of oxygen-transport diffusion resistance in proton-exchange-membrane fuel cells[J]. Journal of the Electrochemical Society, 2011, 158(4): B416-B423. |
| [52] | Hwanyeong OH, LEE Yooil, LEE Guesang, et al. Experimental dissection of oxygen transport resistance in the components of a polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2017, 345: 67-77. |
| [53] | SHEN Shuiyun, CHENG Xiaojing, WANG Chao, et al. Exploration of significant influences of the operating conditions on the local O2 transport in proton exchange membrane fuel cells (PEMFCs)[J]. Physical Chemistry Chemical Physics, 2017, 19(38): 26221-26229. |
| [54] | LOPEZ-HARO M, GUÉTAZ L, PRINTEMPS T, et al. Three-dimensional analysis of Nafion layers in fuel cell electrodes[J]. Nature Communications, 2014, 5: 5229. |
| [55] | RONGPIPI Sintu, CHAN Jonathan M, BIRD Ashley, et al. Revealing mesoscale ionomer membrane structure by tender resonant X-ray scattering[J]. ACS Applied Polymer Materials, 2024, 6(23): 14115-14123. |
| [56] | 王素力, 孙瑞利, 孙公权. 一种多孔电极离聚物覆盖度标定方法: CN112666306B[P]. 2023-06-27. |
| WANG Suli, SUN Ruili, SUN Gongquan. Porous electrode ionomer coverage calibration method: CN112666306B[P]. 2023-06-27. | |
| [57] | HEENAN Thomas M M, TAN Chun, HACK Jennifer, et al. Developments in X-ray tomography characterization for electrochemical devices[J]. Materials Today, 2019, 31: 69-85. |
| [58] | LANG Jack T, KULKARNI Devashish, FOSTER Collin W, et al. X-ray tomography applied to electrochemical devices and electrocatalysis[J]. Chemical Reviews, 2023, 123(16): 9880-9914. |
| [59] | ISHIKAWA H, SUGAWARA Y, INOUE G, et al. Effects of Pt and ionomer ratios on the structure of catalyst layer: A theoretical model for polymer electrolyte fuel cells[J]. Journal of Power Sources, 2018, 374: 196-204. |
| [60] | KONGKANAND Anusorn, MATHIAS Mark F. The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells[J]. The Journal of Physical Chemistry Letters, 2016, 7(7): 1127-1137. |
| [61] | AROLFI Andrea, OLDANI Claudio, MERLO Luca, et al. New perfluorinated ionomer with improved oxygen permeability for application in cathode polymeric electrolyte membrane fuel cell[J]. Journal of Power Sources, 2018, 396: 95-101. |
| [62] | XU Hui. Novel fluorinated ionomer for PEM fuel cells[R/OL]. DOE Hydrogen Program 2022 Annual Merit Review and Peer Evaluation Meeting, 2022. . |
| [63] | EASTCOTT Jennie I, EASTON E Bradley. Investigation of transport mechanisms for sulfonated silica-based fuel cell electrode structures[J]. Journal of the Electrochemical Society, 2015, 162 (7): F764-F771. |
| [64] | Byungchan BAE, YODA Takeshi, MIYATAKE Kenji, et al. Proton-conductive aromatic ionomers containing highly sulfonated blocks for high-temperature-operable fuel cells[J]. Angewandte Chemie, 2010, 122(2): 327-330. |
| [65] | YANG Jianwei, XU Hengyu, LI Jie, et al. Oxygen- and proton-transporting open framework ionomer for medium-temperature fuel cells[J]. Science, 2024, 385(6713): 1115-1120. |
| [66] | GRESZLER Thomas A, CAULK David, SINHA Puneet. The impact of platinum loading on oxygen transport resistance[J]. Journal of the Electrochemical Society, 2012, 159(12): F831-F840. |
| [67] | Sebastian OTT, ORFANIDI Alin, SCHMIES Henrike, et al. Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells[J]. Nature Materials, 2020, 19(1): 77-85. |
| [68] | Trung Truc NGO, YU T Leon, LIN Hsiu-Li. Influence of the composition of isopropyl alcohol/water mixture solvents in catalyst ink solutions on proton exchange membrane fuel cell performance[J]. Journal of Power Sources, 2013, 225: 293-303. |
| [69] | BERLINGER Sarah A, MCCLOSKEY Bryan D, WEBER Adam Z. Inherent acidity of perfluorosulfonic acid ionomer dispersions and implications for ink aggregation[J]. The Journal of Physical Chemistry B, 2018, 122(31): 7790-7796. |
| [70] | SUN Ruili, XIA Zhangxun, XU Xinlong, et al. Periodic evolution of the ionomer/catalyst interfacial structures towards proton conductance and oxygen transport in polymer electrolyte membrane fuel cells[J]. Nano Energy, 2020, 75: 104919. |
| [71] | LEE Jongmin, ESCRIBANO Sylvie, MICOUD Fabrice, et al. In situ measurement of ionomer water content and liquid water saturation in fuel cell catalyst layers by high-resolution small angle neutron scattering[J]. ACS Applied Energy Materials, 2020, 3(9): 8393-8401. |
| [1] | 周寅聪, 熊小鹤, 郭富文, 张一楠, 谭厚章. 20G和T91钢在含硫和氯元素的熔盐环境中的热腐蚀行为[J]. 化工进展, 2025, 44(S1): 541-550. |
| [2] | 张涵林, 岳学海, 刘俊希, 殷逢俊. 钌锶铱电沉积构筑高稳定性析氧反应电催化剂[J]. 化工进展, 2025, 44(S1): 243-251. |
| [3] | 李芮莹, 周颖, 周红军, 徐春明. 生物质衍生纳米碳基材料:电化学场景下的机遇与挑战[J]. 化工进展, 2025, 44(S1): 288-306. |
| [4] | 周敬皓, 张朝阳, 胡昊星, 王思茗, 刘静远, 魏光华. 基于格子玻尔兹曼方法的PEMFC微孔层气体传质分析[J]. 化工进展, 2025, 44(9): 4898-4907. |
| [5] | 郝亚玲, 李春丽, 周楠, 程佳豪, 王佳瑞, 霍蓉, 王德龙, 杨鹏. 不同氮源掺杂石墨烯电极材料的制备及电化学性能[J]. 化工进展, 2025, 44(9): 5150-5160. |
| [6] | 左启斌, 张涵, 孙传付, 胡桂林, 夏玉珍. 镍/石墨烯涂层在质子交换膜燃料电池泡沫金属流场上的应用[J]. 化工进展, 2025, 44(9): 5195-5201. |
| [7] | 黄可儿, 刘佳豪, 李昊明, 周天航, 高金森, 蓝兴英. 基于分子动力学模拟的胺溶剂碳捕集过程自扩散系数[J]. 化工进展, 2025, 44(8): 4352-4364. |
| [8] | 段五华, 孙涛祥, 郑强. 工业规模核用离心萃取器的水力学和传质性能[J]. 化工进展, 2025, 44(7): 3709-3717. |
| [9] | 孙金磊, 廖丹葵, 陈小鹏, 童张法. 超重力-微界面法制备类球形纳米碳酸钙[J]. 化工进展, 2025, 44(7): 3757-3769. |
| [10] | 王帅, 钱相臣, 章雷其, 吴启亮, 刘敏. 质子交换膜燃料电池和电解槽关键组件衰减机理[J]. 化工进展, 2025, 44(7): 3804-3815. |
| [11] | 陈东健, 孙雨倩, 银凤翔. FeNi3-Fe3O4/CN催化剂的制备及其电催化析氧性能[J]. 化工进展, 2025, 44(7): 3928-3937. |
| [12] | 于宁, 王秋月, 王志才, 高子怡, 柴永明, 董斌. 双位点协同调控增强钙钛矿氧化物的水氧化活性[J]. 化工进展, 2025, 44(7): 3976-3984. |
| [13] | 毛元豪, 范会峰, SAYD Sultan, 方芙蓉, 钟琦, 余云松, 吴小梅, 张早校. 电化学介导胺再生CO2捕集技术研究进展[J]. 化工进展, 2025, 44(7): 4089-4100. |
| [14] | 赵保华, 刘晓娜, 胡彦云, 贾天聪, 谢强, 贺燕, 马相帅, 马双忱. 传统电吸附与流动电极电容去离子技术对比和发展趋势[J]. 化工进展, 2025, 44(7): 4101-4116. |
| [15] | 孔灿, 刘雨函, 盛誉, 刘芳, 常化振. 聚苯胺增强氧化亚铜催化二氧化碳还原[J]. 化工进展, 2025, 44(6): 3144-3153. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |