化工进展 ›› 2025, Vol. 44 ›› Issue (11): 6174-6186.DOI: 10.16085/j.issn.1000-6613.2024-1532
• 能源加工与技术 • 上一篇
徐乃光(
), 刘涛涛, 宋薇, 聂文文, 王雪可, 严兆晨, 王昌松(
)
收稿日期:2024-09-20
修回日期:2025-02-02
出版日期:2025-11-25
发布日期:2025-12-08
通讯作者:
王昌松
作者简介:徐乃光(1996—),男,硕士研究生,研究方向为生物质气化设计。E-mail:981449636@qq.com。
基金资助:
XU Naiguang(
), LIU Taotao, SONG Wei, NIE Wenwen, WANG Xueke, YAN Zhaochen, WANG Changsong(
)
Received:2024-09-20
Revised:2025-02-02
Online:2025-11-25
Published:2025-12-08
Contact:
WANG Changsong
摘要:
生物质气化作为清洁能源技术,因其可高效转化生物质为高热值合成气而受到关注。然而,焦油的产生严重影响气化效率和合成气质量。本文介绍了生物质焦油的定义、分类及其形成机理,综述了现阶段通过调整生物质特性、操作条件和添加催化剂来减少焦油的研究进展。文献调研表明:生物质的木质素含量、粒径及含水率均影响焦油产生;气化炉型优化、气化温度提高和蒸汽、氧气等气化剂的使用都有助于减少焦油并提高合成气质量;加压操作在大规模气化中表现出潜力,但在小规模气化中可能会增加焦油产生。催化剂(如白云石、橄榄石和镍基催化剂)虽在焦油裂解中效果显著,但面临失活和成本高的挑战。此外,本文还介绍了微波辅助与化学链气化结合技术及碳化硅膜与催化剂联用的新方法,这些创新技术展现出显著的减焦优势和潜在应用前景。未来研究应专注于催化剂的长效性、低成本制备及新型技术的开发,以高效减少焦油并推动生物质气化的可持续发展。
中图分类号:
徐乃光, 刘涛涛, 宋薇, 聂文文, 王雪可, 严兆晨, 王昌松. 生物质气化过程中焦油减量研究进展[J]. 化工进展, 2025, 44(11): 6174-6186.
XU Naiguang, LIU Taotao, SONG Wei, NIE Wenwen, WANG Xueke, YAN Zhaochen, WANG Changsong. Research progress on tar reduction in biomass gasification process[J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6174-6186.
| 方法 | 种类 | 描述 | 典型化合物 |
|---|---|---|---|
| 基于形成过程 | 初级焦油 | 400~700℃下低分子量含氧化合物及衍生物 | 甲醇、乙醛、呋喃 |
| 次级焦油 | 700~850℃下酚类和烯烃类转化成的化合物 | 苯酚、丙烯 | |
| 三级焦油 | 850~1000℃下无分支的芳香化合物 | 苯、甲苯、萘、蒽、菲 | |
| 基于芳环的数量 | Ⅰ类 | GC检测不到的重焦油,高温下冷凝 | — |
| Ⅱ类 | 含有杂原子的有机化合物,高水溶性 | 吡啶、苯酚、喹啉 | |
| Ⅲ类 | 单环芳香烃类,通常不会冷凝和水溶 | 甲苯、苯乙烯 | |
| Ⅳ类 | 2~3环芳香烃类,中温、高浓度下冷凝 | 菲、萘、芴 | |
| Ⅴ类 | 4~5环芳香烃类,高温、低浓度下冷凝 | 荧蒽、冠烯 |
表1 生物质焦油分类
| 方法 | 种类 | 描述 | 典型化合物 |
|---|---|---|---|
| 基于形成过程 | 初级焦油 | 400~700℃下低分子量含氧化合物及衍生物 | 甲醇、乙醛、呋喃 |
| 次级焦油 | 700~850℃下酚类和烯烃类转化成的化合物 | 苯酚、丙烯 | |
| 三级焦油 | 850~1000℃下无分支的芳香化合物 | 苯、甲苯、萘、蒽、菲 | |
| 基于芳环的数量 | Ⅰ类 | GC检测不到的重焦油,高温下冷凝 | — |
| Ⅱ类 | 含有杂原子的有机化合物,高水溶性 | 吡啶、苯酚、喹啉 | |
| Ⅲ类 | 单环芳香烃类,通常不会冷凝和水溶 | 甲苯、苯乙烯 | |
| Ⅳ类 | 2~3环芳香烃类,中温、高浓度下冷凝 | 菲、萘、芴 | |
| Ⅴ类 | 4~5环芳香烃类,高温、低浓度下冷凝 | 荧蒽、冠烯 |
| 序号 | 原料 | 生物质成分(质量分数) | 工艺描述 | 气化剂 | 焦油含量 | 参考文献 |
|---|---|---|---|---|---|---|
| #1 | 微晶纤维素 | 99.0%纤维素 | 下吸式固定床气化炉1000℃ | 氮气 | 1.2mg/g | [ |
| 小麦木聚糖 | 99.0%半纤维素 | 1.4mg/g | ||||
| 硫酸盐木质素 | 98.0%木质素 | 3.9mg/g | ||||
| #2 | 松木 | 36.7%纤维素 26.1%半纤维素 27.5%木质素 | 固定床气化炉500℃ | 氮气 | 338mg/g | [ |
| #3 | 芒草 | 45.7%纤维素 22.8%半纤维素 20.2%木质素 | 211mg/g | |||
| #4 | 小麦秸秆 | 33.8%纤维素 21.7%半纤维素 20.5%木质素 | 159mg/g | |||
| #5 | 秸秆 | 40.5%纤维素 24.9%半纤维素 17.6%木质素 | 下吸式固定床气化炉1000℃ | 氮气 | 2mg/g | [ |
| #6 | 松木 | 46.8%纤维素 18.5%半纤维素 27.3%木质素 | 8mg/g | |||
| #7 | 木材颗粒 | 含水率6.9% | 流化床气化炉700℃,粒径20.0mm | 蒸汽 | 190mg/g | [ |
| 粒径5.0mm | 80mg/g | |||||
| #8 | 木材残留物 | 47.6%纤维素 39.0%半纤维素 11.2%木质素 | 上吸式固定床气化炉480℃,粒径30.0mm | 氮气 | 145mg/g | [ |
| 粒径20.0mm | 200mg/g | |||||
| 粒径10.0mm | 260mg/g | |||||
| #9 | 玉米秸秆 | 27.9%纤维素 18.1%半纤维素 23.4%木质素 | 流化床气化炉700℃,ER=0.21 | 空气 | 6.2g/m3 | [ |
| 820℃,ER=0.31 | 4.0g/m3 | |||||
| 700℃,S/B=0.6 | 蒸汽 | 3.5g/m3 | ||||
| #10 | 松木屑 | 含水率10.0% | 上吸式固定床气化炉840℃,粒径2.0mm | 空气 | 79.4g/m3 | [ |
| 粒径7.0mm | 13.0g/m3 | |||||
| 粒径30.0mm | 93.0g/m3 | |||||
| 含水率22.0% | 粒径7.0mm | 6.2g/m3 | ||||
| #11 | 木片 | 含水率6.0% | 流化床气化炉810℃ | 空气 | 8.3g/m3 | [ |
| 含水率19.0% | 5.2g/m3 | |||||
| 含水率30.0% | 5.6g/m3 | |||||
| #12 | 干化污水污泥 | 含水率7.3% | 鼓泡流化床,ER=0.26,659℃ | 蒸汽和氧气 | 98.0g/m3 | [ |
| 778℃ | 31.0g/m3 | |||||
| 894℃ | 21.0g/m3 | |||||
| #13 | 干化污水污泥 | — | 流化床气化炉,818℃,ER=0.22 | 空气 | 296.0mg/m3 | [ |
| 821℃,ER=0.50 | 76.0mg/m3 | |||||
| #14 | 沼渣 | 含水率10.0%~20.0% | 循环流化床气化炉,810℃,ER=0.32 | 空气 | 8.6g/m3 | [ |
| ER=0.36,S/B=0.79 | 空气和蒸汽 | 3.7g/m3 | ||||
| #15 | 松木锯末 | — | 流化床气化炉,900℃ | 氮气 | 154.0g/m3 | [ |
| S/B=1.0 | 蒸汽 | 142.0g/m3 | ||||
| #16 | 稻壳、稻草和聚乙烯 | — | 鼓泡流化床气化炉,850℃,ER=0.2 | 蒸汽和空气 | 12.5g/m3 | [ |
| 蒸汽和60%富氧空气 | 9.0g/m3 | |||||
| #17 | 桉树木片 | — | 上吸式固定床气化炉,ER=0.24,S/B=0.20 | 空气和蒸汽 | 31.6g/m3 | [ |
| ER=0.23,S/B=0.21 | 氧气和蒸汽 | 11.2g/m3 | ||||
| #18 | 云杉 | — | 流化床气化炉0.1MPa,ER=0.22,S/B=1.6 | 空气和蒸汽 | 0.5%(质量分数) | [ |
| 1MPa,ER=0.24,S/B=1.7 | 1.6%(质量分数) | |||||
| #19 | 煤 | — | 高压反应器,2MPa | 氧气和蒸汽 | 3078.5mg/m3 | [ |
| 4MPa | 氧气和蒸汽 | 556.5mg/m3 |
表2 不同生物质及气化工艺对焦油含量的影响
| 序号 | 原料 | 生物质成分(质量分数) | 工艺描述 | 气化剂 | 焦油含量 | 参考文献 |
|---|---|---|---|---|---|---|
| #1 | 微晶纤维素 | 99.0%纤维素 | 下吸式固定床气化炉1000℃ | 氮气 | 1.2mg/g | [ |
| 小麦木聚糖 | 99.0%半纤维素 | 1.4mg/g | ||||
| 硫酸盐木质素 | 98.0%木质素 | 3.9mg/g | ||||
| #2 | 松木 | 36.7%纤维素 26.1%半纤维素 27.5%木质素 | 固定床气化炉500℃ | 氮气 | 338mg/g | [ |
| #3 | 芒草 | 45.7%纤维素 22.8%半纤维素 20.2%木质素 | 211mg/g | |||
| #4 | 小麦秸秆 | 33.8%纤维素 21.7%半纤维素 20.5%木质素 | 159mg/g | |||
| #5 | 秸秆 | 40.5%纤维素 24.9%半纤维素 17.6%木质素 | 下吸式固定床气化炉1000℃ | 氮气 | 2mg/g | [ |
| #6 | 松木 | 46.8%纤维素 18.5%半纤维素 27.3%木质素 | 8mg/g | |||
| #7 | 木材颗粒 | 含水率6.9% | 流化床气化炉700℃,粒径20.0mm | 蒸汽 | 190mg/g | [ |
| 粒径5.0mm | 80mg/g | |||||
| #8 | 木材残留物 | 47.6%纤维素 39.0%半纤维素 11.2%木质素 | 上吸式固定床气化炉480℃,粒径30.0mm | 氮气 | 145mg/g | [ |
| 粒径20.0mm | 200mg/g | |||||
| 粒径10.0mm | 260mg/g | |||||
| #9 | 玉米秸秆 | 27.9%纤维素 18.1%半纤维素 23.4%木质素 | 流化床气化炉700℃,ER=0.21 | 空气 | 6.2g/m3 | [ |
| 820℃,ER=0.31 | 4.0g/m3 | |||||
| 700℃,S/B=0.6 | 蒸汽 | 3.5g/m3 | ||||
| #10 | 松木屑 | 含水率10.0% | 上吸式固定床气化炉840℃,粒径2.0mm | 空气 | 79.4g/m3 | [ |
| 粒径7.0mm | 13.0g/m3 | |||||
| 粒径30.0mm | 93.0g/m3 | |||||
| 含水率22.0% | 粒径7.0mm | 6.2g/m3 | ||||
| #11 | 木片 | 含水率6.0% | 流化床气化炉810℃ | 空气 | 8.3g/m3 | [ |
| 含水率19.0% | 5.2g/m3 | |||||
| 含水率30.0% | 5.6g/m3 | |||||
| #12 | 干化污水污泥 | 含水率7.3% | 鼓泡流化床,ER=0.26,659℃ | 蒸汽和氧气 | 98.0g/m3 | [ |
| 778℃ | 31.0g/m3 | |||||
| 894℃ | 21.0g/m3 | |||||
| #13 | 干化污水污泥 | — | 流化床气化炉,818℃,ER=0.22 | 空气 | 296.0mg/m3 | [ |
| 821℃,ER=0.50 | 76.0mg/m3 | |||||
| #14 | 沼渣 | 含水率10.0%~20.0% | 循环流化床气化炉,810℃,ER=0.32 | 空气 | 8.6g/m3 | [ |
| ER=0.36,S/B=0.79 | 空气和蒸汽 | 3.7g/m3 | ||||
| #15 | 松木锯末 | — | 流化床气化炉,900℃ | 氮气 | 154.0g/m3 | [ |
| S/B=1.0 | 蒸汽 | 142.0g/m3 | ||||
| #16 | 稻壳、稻草和聚乙烯 | — | 鼓泡流化床气化炉,850℃,ER=0.2 | 蒸汽和空气 | 12.5g/m3 | [ |
| 蒸汽和60%富氧空气 | 9.0g/m3 | |||||
| #17 | 桉树木片 | — | 上吸式固定床气化炉,ER=0.24,S/B=0.20 | 空气和蒸汽 | 31.6g/m3 | [ |
| ER=0.23,S/B=0.21 | 氧气和蒸汽 | 11.2g/m3 | ||||
| #18 | 云杉 | — | 流化床气化炉0.1MPa,ER=0.22,S/B=1.6 | 空气和蒸汽 | 0.5%(质量分数) | [ |
| 1MPa,ER=0.24,S/B=1.7 | 1.6%(质量分数) | |||||
| #19 | 煤 | — | 高压反应器,2MPa | 氧气和蒸汽 | 3078.5mg/m3 | [ |
| 4MPa | 氧气和蒸汽 | 556.5mg/m3 |
| 气化炉 | 焦油浓度/g·m-3 | 优点 | 缺点 |
|---|---|---|---|
| 上吸式固定床气化炉 | 10~150 | 结构简单、热效率高、可处理高含水率原料 | 气体产率低、启动耗时长、焦油含量高 |
| 下吸式固定床气化炉 | 0.015~0.5 | 结构简单、碳转化率高、焦油含量低 | 热效率低、需要低含水率的原料 |
| 横吸式固定床气化炉 | — | 启动时间短、气化炉高度低 | 热效率低、出口气体温度高 |
| 鼓泡流化床气化炉 | 3~40 | 能适应多种原料、高热负荷、操作灵活 | 对粒径有要求、气体净化需求高 |
| 循环流化床气化炉 | 5~12 | 气化效率高、适应大规模工业化 | 设备投资大,工艺控制难度大 |
| 夹带流气化炉 | 几乎没有 | 高效连续气化、规模大、气体洁净 | 设计和运行复杂,设备投资最高 |
表3 生物质气化炉类型
| 气化炉 | 焦油浓度/g·m-3 | 优点 | 缺点 |
|---|---|---|---|
| 上吸式固定床气化炉 | 10~150 | 结构简单、热效率高、可处理高含水率原料 | 气体产率低、启动耗时长、焦油含量高 |
| 下吸式固定床气化炉 | 0.015~0.5 | 结构简单、碳转化率高、焦油含量低 | 热效率低、需要低含水率的原料 |
| 横吸式固定床气化炉 | — | 启动时间短、气化炉高度低 | 热效率低、出口气体温度高 |
| 鼓泡流化床气化炉 | 3~40 | 能适应多种原料、高热负荷、操作灵活 | 对粒径有要求、气体净化需求高 |
| 循环流化床气化炉 | 5~12 | 气化效率高、适应大规模工业化 | 设备投资大,工艺控制难度大 |
| 夹带流气化炉 | 几乎没有 | 高效连续气化、规模大、气体洁净 | 设计和运行复杂,设备投资最高 |
| 催化剂名称 | 主要成分 | 效率/% | 描述 |
|---|---|---|---|
| 白云石 | CaMg(CO3)2 | 40~88[ | 活性高,但机械强度较低,容易磨损 |
| 橄榄石 | (Mg,Fe)2SiO4 | 20~70[ | 机械强度高,活性较低,但可通过活化提高 |
| 镍基催化剂 | Ni,载体(如Al2O3) | 50~99.5[ | 活性高,但易失活,毒性较大 |
| 生物炭催化剂 | 焦炭/负载Ni | 40~94.5[ | 低成本,可再生,活性较低,需要负载金属 |
表4 常见原位催化剂
| 催化剂名称 | 主要成分 | 效率/% | 描述 |
|---|---|---|---|
| 白云石 | CaMg(CO3)2 | 40~88[ | 活性高,但机械强度较低,容易磨损 |
| 橄榄石 | (Mg,Fe)2SiO4 | 20~70[ | 机械强度高,活性较低,但可通过活化提高 |
| 镍基催化剂 | Ni,载体(如Al2O3) | 50~99.5[ | 活性高,但易失活,毒性较大 |
| 生物炭催化剂 | 焦炭/负载Ni | 40~94.5[ | 低成本,可再生,活性较低,需要负载金属 |
| [1] | 解云翔. 中国生物质能发展现状及应用探究[J]. 化学研究, 2022, 33(6): 555-560. |
| XIE Yunxiang. Exploring the current situation and applications of biomass energy development in China[J]. Chemical Research, 2022, 33(6): 555-560. | |
| [2] | International Energy Agency (IEA). Tracking clean energy progress 2023: Assessing critical energy technologies for global clean energy transitions[R]. Paris: IEA, 2023. |
| [3] | BUFFI Marco, PRUSSI Matteo, SCARLAT Nicolae. Energy and environmental assessment of hydrogen from biomass sources: Challenges and perspectives[J]. Biomass and Bioenergy, 2022, 165: 106556. |
| [4] | SANSANIWAL S K, PAL K, ROSEN M A, et al. Recent advances in the development of biomass gasification technology: A comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2017, 72: 363-384. |
| [5] | ABDOULMOUMINE Nourredine, KULKARNI Avanti, ADHIKARI Sushil. Effects of temperature and equivalence ratio on pine syngas primary gases and contaminants in a bench-scale fluidized bed gasifier[J]. Industrial & Engineering Chemistry Research, 2014, 53(14): 5767-5777. |
| [6] | REN Jie, LIU Yiling, ZHAO Xiaoyan, et al. Biomass thermochemical conversion: A review on tar elimination from biomass catalytic gasification[J]. Journal of the Energy Institute, 2020, 93(3): 1083-1098. |
| [7] | MILNE T A, EVANS R J, ABATZOGLOU N. Biomass gasifier “tars”: Their nature, formation, and conversion, NREL/TP-570-25357[R]. US: NERL, 1998. |
| [8] | 李乐豪, 闻光东, 杨启炜, 等. 生物质焦油处理方法研究进展[J]. 化工进展, 2017, 36(7): 2407-2416. |
| LI Lehao, WEN Guangdong, YANG Qiwei, et al. Advance in the treatment methods of biomass tar[J]. Chemical Industry and Engineering Progress, 2017, 36(7): 2407-2416. | |
| [9] | RABOU Luc P L M, ZWART Robin W R, VREUGDENHIL Berend J, et al. Tar in biomass producer gas, the Energy Research Centre of the Netherlands (ECN) experience: An enduring challenge[J]. Energy & Fuels, 2009, 23(12): 6189-6198. |
| [10] | ANIS Samsudin, ZAINAL Z A. Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(5): 2355-2377. |
| [11] | JAYANARASIMHAN Ananthanarasimhan, PATHAK Ram Mohan, SHIVAPUJI Anand M, et al. Tar formation in gasification systems: A holistic review of remediation approaches and removal methods[J]. ACS Omega, 2024, 9(2): 2060-2079. |
| [12] | BURHENNE Luisa, MESSMER Jonas, AICHER Thomas, et al. The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2013, 101: 177-184. |
| [13] | LIN Yuchuan, CHO Joungmo, TOMPSETT Geoffrey A, et al. Kinetics and mechanism of cellulose pyrolysis[J]. The Journal of Physical Chemistry C, 2009, 113(46): 20097-20107. |
| [14] | LU Xinyu, GU Xiaoli. A review on lignin pyrolysis: Pyrolytic behavior, mechanism, and relevant upgrading for improving process efficiency[J]. Biotechnology for Biofuels and Bioproducts, 2022, 15(1): 106. |
| [15] | FRENKLACH Michael, WANG Hai. Detailed mechanism and modeling of soot particle formation[M]// Soot Formation in Combustion. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994: 165-192. |
| [16] | FONT PALMA Carolina. Modelling of tar formation and evolution for biomass gasification: A review[J]. Applied Energy, 2013, 111: 129-141. |
| [17] | CORTAZAR M, SANTAMARIA L, LOPEZ G, et al. A comprehensive review of primary strategies for tar removal in biomass gasification[J]. Energy Conversion and Management, 2023, 276: 116496. |
| [18] | SIKARWAR Vineet Singh, ZHAO Ming, CLOUGH Peter, et al. An overview of advances in biomass gasification[J]. Energy & Environmental Science, 2016, 9(10): 2939-2977. |
| [19] | YU Haimiao, WU Zilu, CHEN Geng. Catalytic gasification characteristics of cellulose, hemicellulose and lignin[J]. Renewable Energy, 2018, 121: 559-567. |
| [20] | KONSOMBOON Supatchaya, Jean-Michel COMMANDRÉ, FUKUDA Suneerat. Torrefaction of various biomass feedstocks and its impact on the reduction of tar produced during pyrolysis[J]. Energy & Fuels, 2019, 33(4): 3257-3266. |
| [21] | RAPAGNÀ S, MAZZIOTTI DI CELSO G. Devolatilization of wood particles in a hot fluidized bed: Product yields and conversion rates[J]. Biomass and Bioenergy, 2008, 32(12): 1123-1129. |
| [22] | ELHENAWY Yasser, FOUAD Kareem, MANSI Amr, et al. Experimental analysis and numerical simulation of biomass pyrolysis[J]. Journal of Thermal Analysis and Calorimetry, 2024, 149(19): 10369-10383. |
| [23] | GUO Shuai, WEI Xiao, LI Jian, et al. Experimental study on product gas and tar removal in air-steam gasification of corn straw in a bench-scale internally circulating fluidized bed[J]. Energy & Fuels, 2020, 34(2): 1908-1917. |
| [24] | Arthur JAMES R, YUAN Wenqiao, BOYETTE Michael. The effect of biomass physical properties on top-lit updraft gasification of woodchips[J]. Energies, 2016, 9(4): 283. |
| [25] | PFEIFER Christoph, KOPPATZ Stefan, HOFBAUER Hermann. Steam gasification of various feedstocks at a dual fluidised bed gasifier: Impacts of operation conditions and bed materials[J]. Biomass Conversion and Biorefinery, 2011, 1(1): 39-53. |
| [26] | SCHMID Max, HAFNER Selina, Günter SCHEFFKNECHT. Experimental parameter study on synthesis gas production by steam-oxygen fluidized bed gasification of sewage sludge[J]. Applied Sciences, 2021, 11(2): 579. |
| [27] | CHOI Young-Kon, Ji-Ho KO, KIM Joo-Sik. A new type three-stage gasification of dried sewage sludge: Effects of equivalence ratio, weight ratio of activated carbon to feed, and feed rate on gas composition and tar, NH3, and H2S removal and results of approximately 5h gasification[J]. Energy, 2017, 118: 139-146. |
| [28] | Pavel MILČÁK, Marek BALÁŠ, Martin LISÝ, et al. Digestate and woodchips gasification: A comparison of different gasifying agents[J]. Fuel Processing Technology, 2024, 258: 108091. |
| [29] | ERKIAGA Aitziber, LOPEZ Gartzen, AMUTIO Maider, et al. Influence of operating conditions on the steam gasification of biomass in a conical spouted bed reactor[J]. Chemical Engineering Journal, 2014, 237: 259-267. |
| [30] | PINTO Filomena, Rui ANDRÉ, MIRANDA Miguel, et al. Effect of gasification agent on co-gasification of rice production wastes mixtures[J]. Fuel, 2016, 180: 407-416. |
| [31] | CERONE N, ZIMBARDI F, VILLONE A, et al. Gasification of wood and torrefied wood with air, oxygen, and steam in a fixed-bed pilot plant[J]. Energy & Fuels, 2016, 30(5): 4034-4043. |
| [32] | BERRUECO C, RECARI J, Matas GÜELL B, et al. Pressurized gasification of torrefied woody biomass in a lab scale fluidized bed[J]. Energy, 2014, 70: 68-78. |
| [33] | WIATOWSKI Marian, BASA Wioleta, Magdalena PANKIEWICZ-SPERKA, et al. Experimental study on tar formation during underground coal gasification: Effect of coal rank and gasification pressure on tar yield and chemical composition[J]. Fuel, 2024, 357: 130034. |
| [34] | BEHESHTI S M, GHASSEMI H, SHAHSAVAN-MARKADEH R. Process simulation of biomass gasification in a bubbling fluidized bed reactor[J]. Energy Conversion and Management, 2015, 94: 345-352. |
| [35] | SUSASTRIAWAN A A P, SAPTOADI Harwin, PURNOMO. Small-scale downdraft gasifiers for biomass gasification: A review[J]. Renewable and Sustainable Energy Reviews, 2017, 76: 989-1003. |
| [36] | AKBARIAN Atefeh, ANDOOZ Amirhossein, KOWSARI Elaheh, et al. Challenges and opportunities of lignocellulosic biomass gasification in the path of circular bioeconomy[J]. Bioresource Technology, 2022, 362: 127774. |
| [37] | ASBIK Mohamed, BOUSHAKI Toufik, BELANDRIA Veronica, et al. Suitable thermochemical conversion technology for organic waste recovery in developing countries[M]// Waste Management in Developing Countries. Cham: Springer International Publishing, 2023: 221-251. |
| [38] | SITUMORANG Yohanes Andre, ZHAO Zhongkai, YOSHIDA Akihiro, et al. Small-scale biomass gasification systems for power generation (<200kW class): A review[J]. Renewable and Sustainable Energy Reviews, 2020, 117: 109486. |
| [39] | RAKESH N, DASAPPA S. A critical assessment of tar generated during biomass gasification—Formation, evaluation, issues and mitigation strategies[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 1045-1064. |
| [40] | THOMSON Richard, KWONG Philip, AHMAD Ejaz, et al. Clean syngas from small commercial biomass gasifiers; A review of gasifier development, recent advances and performance evaluation[J]. International Journal of Hydrogen Energy, 2020, 45(41): 21087-21111. |
| [41] | HEIDENREICH Steffen, FOSCOLO Pier Ugo. New concepts in biomass gasification[J]. Progress in Energy and Combustion Science, 2015, 46: 72-95. |
| [42] | CHOPRA S, JAIN A. A review of fixed bed gasification systems for biomass[J]. Agricultural Engineering International: the CIGR Journal, 2007, 9(5): 1-23. |
| [43] | DE Śāntanu, AGARWAL Avinash K, MOHOLKAR V S, et al. Coal and biomass gasification: Recent advances and future challenges[M]// Gas Cleaning and Tar Conversion in Biomass Gasification. Singapore: Springer Nature Singapore, 2018: 151-172. |
| [44] | CHANTHAKETT Apinya, ARIF M T, KHAN M K, et al. Performance assessment of gasification reactors for sustainable management of municipal solid waste[J]. Journal of Environmental Management, 2021, 291: 112661. |
| [45] | SAMIRAN Nor Afzanizam, JAAFAR Mohammad Nazri Mohd, Jo-Han NG, et al. Progress in biomass gasification technique—With focus on Malaysian palm biomass for syngas production[J]. Renewable and Sustainable Energy Reviews, 2016, 62: 1047-1062. |
| [46] | XIAO Ruirui, YANG Wei. Influence of temperature on organic structure of biomass pyrolysis products[J]. Renewable Energy, 2013, 50: 136-141. |
| [47] | MAITLO Ghulamullah, Imran ALI, MANGI Kashif Hussain, et al. Thermochemical conversion of biomass for syngas production: Current status and future trends[J]. Sustainability, 2022, 14(5): 2596. |
| [48] | YAN Beibei, JIA Xiaopeng, LI Jian, et al. In-situ elimination of biomass gasification tar based on the understanding of tar formation process: A review[J]. Journal of the Energy Institute, 2024, 112: 101477. |
| [49] | DIN Zia UD, ZAINAL Z A. Biomass integrated gasification—SOFC systems: Technology overview[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 1356-1376. |
| [50] | REED Thomas B, Agua DAS. Handbook of biomass downdraft gasifier engine systems[M]. Golden, Colo. Solar Technical Information Program, Solar Energy Research Institute, 1988. |
| [51] | ZHAO Yijun, SUN Shaozeng, ZHOU Hao, et al. Experimental study on sawdust air gasification in an entrained-flow reactor[J]. Fuel Processing Technology, 2010, 91(8): 910-914. |
| [52] | DE SALES Cristina Ap Vilas Bôas, MAYA Diego Mauricio Yepes, LORA Electo Eduardo Silva, et al. Experimental study on biomass (Eucalyptus spp.) gasification in a two-stage downdraft reactor by using mixtures of air, saturated steam and oxygen as gasifying agents[J]. Energy Conversion and Management, 2017, 145: 314-323. |
| [53] | SENTHILKUMAR V, PRABHU C. Optimization of design and development of a biomass gasifier—A review[J]. Biofuels, 2024, 15(8): 1079-1097. |
| [54] | RUIZ J A, JUÁREZ M C, MORALES M P, et al. Biomass gasification for electricity generation: Review of current technology barriers[J]. Renewable and Sustainable Energy Reviews, 2013, 18: 174-183. |
| [55] | VARJANI Sunita. Efficient removal of tar employing dolomite catalyst in gasification: Challenges and opportunities[J]. Science of the Total Environment, 2022, 836: 155721. |
| [56] | NARNAWARE S L, PANWAR N L. Catalysts and their role in biomass gasification and tar abetment: A review[J]. Biomass Conversion and Biorefinery, 2021: 1-31. |
| [57] | YIN Fengkui, TREMAIN Priscilla, YU Jianglong, et al. An experimental investigation of the catalytic activity of natural calcium-rich minerals and a novel dual-supported CaO-Ca12Al14O33/Al2O3 catalyst for biotar steam reforming[J]. Energy & Fuels, 2018, 32(4): 4269-4277. |
| [58] | ZHANG Guozhao, LIU Hao, WANG Jia, et al. Catalytic gasification characteristics of rice husk with calcined dolomite[J]. Energy, 2018, 165: 1173-1177. |
| [59] | CHRISTODOULOU Chr, GRIMEKIS D, PANOPOULOS K D, et al. Comparing calcined and un-treated olivine as bed materials for tar reduction in fluidized bed gasification[J]. Fuel Processing Technology, 2014, 124: 275-285. |
| [60] | FURUSAWA Takeshi, SAITO Katsuhiko, KORI Yoshihiko, et al. Steam reforming of naphthalene/benzene with various types of Pt- and Ni-based catalysts for hydrogen production[J]. Fuel, 2013, 103: 111-121. |
| [61] | LI Jianfen, LIU Jianjun, LIAO Shiyan, et al. Hydrogen-rich gas production by air-steam gasification of rice husk using supported nano-NiO/γ-Al2O3 catalyst[J]. International Journal of Hydrogen Energy, 2010, 35(14): 7399-7404. |
| [62] | ZHANG Yu, FENG Dongdong, ZHAO Yijun, et al. Evolution of char structure during in-situ biomass tar reforming: Importance of the coupling effect among the physical-chemical structure of char-based catalysts[J]. Catalysts, 2019, 9(9): 711. |
| [63] | BAI Jing, HE Zheng, YANG Luying, et al. Preparation and characterization of furfural residue derived char-based catalysts for biomass tar cracking[J]. Waste Management, 2024, 179: 182-191. |
| [64] | ZHANG Ruiqin, WANG Yanchang, BROWN Robert C. Steam reforming of tar compounds over Ni/olivine catalysts doped with CeO2 [J]. Energy Conversion and Management, 2007, 48(1): 68-77. |
| [65] | ABEDIN Ashraf, BAI Xinwei, SMITH Mark, et al. Microwave-assisted co-gasification of mixed plastics and corn stover: A synergistic approach to produce clean hydrogen[J]. Energy Conversion and Management, 2023, 280: 116774. |
| [66] | 唐亘炀, 顾菁, 杨秋, 等. 有机固体废弃物化学链气化技术研究进展[J]. 石油学报(石油加工), 2021, 37(3): 700-718. |
| TANG Genyang, GU Jing, YANG Qiu, et al. Research progress in chemical looping gasification technology of organic solid waste[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021, 37(3): 700-718. | |
| [67] | ZHANG Bo, ZHANG Jing, ZHONG Zhaoping, et al. Syngas production and trace element emissions from microwave-assisted chemical looping gasification of heavy metal hyperaccumulators[J]. Science of the Total Environment, 2019, 659: 612-620. |
| [68] | ZHANG Guoquan, SUN Tianjun, PENG Jiaxi, et al. A comparison of Ni/SiC and Ni/Al2O3 catalyzed total methanation for production of synthetic natural gas[J]. Applied Catalysis A: General, 2013, 462: 75-81. |
| [69] | 顾学红, 周巧巧, 丁阿静, 等. 一种基于膜分离净化的集成式生物质/有机固废转化制合成气方法及装置: CN117701306A[P]. 2024-03-15. |
| [70] | HOTZA Dachamir, DI LUCCIO Marco, WILHELM Michaela, et al. Silicon carbide filters and porous membranes: A review of processing, properties, performance and application[J]. Journal of Membrane Science, 2020, 610: 118193. |
| [1] | 李军良, 李悦, 孙道来. Cu/SiO2-Al2O3催化1,2-丁二醇加氢脱氧制备1-丁醇[J]. 化工进展, 2025, 44(S1): 222-231. |
| [2] | 李芮莹, 周颖, 周红军, 徐春明. 生物质衍生纳米碳基材料:电化学场景下的机遇与挑战[J]. 化工进展, 2025, 44(S1): 288-306. |
| [3] | 洪康, 张冲, 马宏莉, 孙雍荣, 蒋丽群, 包桂蓉. 生物质硬炭基钠离子电池负极材料研究进展[J]. 化工进展, 2025, 44(S1): 340-349. |
| [4] | 张文静, 黄致新, 李士腾, 邓帅, 李双俊. 生物质碳气凝胶CO2吸附剂研究进展[J]. 化工进展, 2025, 44(9): 5018-5032. |
| [5] | 蒋春喜, 林定标, 卞耀, 周威, 陆海峰, 郭晓镭, 刘海峰. 用于气流床气化的稻壳原料特性及其影响[J]. 化工进展, 2025, 44(9): 4937-4944. |
| [6] | 杨岚梅, 徐彬, 刘华财, 杨文申, 阴秀丽, 吴创之. 介质阻挡放电部分氧化典型焦油组分混合物的转化特性[J]. 化工进展, 2025, 44(7): 3869-3878. |
| [7] | 张健, 林日辉, 银江林, 李彦姿, 付雨璐, 刘晓霞. 甘蔗尾叶的干法预处理及其乙酰化产物的制备与表征[J]. 化工进展, 2025, 44(7): 3997-4005. |
| [8] | 张嘉政, 毛岩鹏, 魏光朔, 逄栋杰, 徐剑, 董婧祎, 王旭江, 李敬伟, 王文龙. 煤气化渣替代水泥窑燃料的协同处理工艺[J]. 化工进展, 2025, 44(7): 4202-4211. |
| [9] | 秘一芳, 王保国, 王文强, 孙国金, 曹志海. 氮自掺杂蓝藻生物质基活性炭的制备及其CO2吸附性能[J]. 化工进展, 2025, 44(7): 4223-4232. |
| [10] | 马晶, 马玉龙, 朱莉, 乔松, 孙永刚, 吉文欣. 不同方法对煤气化粗渣中硅铝矿物的活化[J]. 化工进展, 2025, 44(7): 4251-4266. |
| [11] | 许志成, 高宁博, 全翠, 宋庆彬. 低温等离子体协同催化转化生物质气化焦油研究进展[J]. 化工进展, 2025, 44(6): 3432-3442. |
| [12] | 武亚丽, 张效林, 高丽敏, 黄茂财, 蔡斌, 张继兵. 秸秆粉/纤维资源化利用技术进展[J]. 化工进展, 2025, 44(6): 3509-3523. |
| [13] | 汪柯, 胡登, 王星博, 孙楠楠, 魏伟. Fe x Co y Ca3Al双功能材料用于CO2捕集-转化一体化制合成气[J]. 化工进展, 2025, 44(5): 2888-2897. |
| [14] | 曹湘洪, 周峰, 姜睿, 刘诗哲, 方向晨, 亢万忠, 乔金樑, 聂红. 加快我国生物基材料产业发展的对策[J]. 化工进展, 2025, 44(5): 2385-2393. |
| [15] | 钟家伟, 谭涛, 谢君, 陈勇. 生物质高值能源转换技术[J]. 化工进展, 2025, 44(5): 2524-2528. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |