化工进展 ›› 2025, Vol. 44 ›› Issue (10): 6083-6092.DOI: 10.16085/j.issn.1000-6613.2024-1495
• 资源与环境化工 • 上一篇
唑的特性
收稿日期:2024-09-10
修回日期:2024-11-21
出版日期:2025-10-25
发布日期:2025-11-10
通讯作者:
钱雅洁
作者简介:杨焱(2000—),女,硕士研究生,研究方向为水污染控制。E-mail: yanyang20008@163.com。
基金资助:
YANG Yan(
), RUAN Renwei, ZHAO Shirong, QIAN Yajie(
)
Received:2024-09-10
Revised:2024-11-21
Online:2025-10-25
Published:2025-11-10
Contact:
QIAN Yajie
摘要:
基于过氧乙酸(PAA)的高级氧化工艺(AOP)因其高氧化性、有毒副产物少等特点广泛应用于水处理过程。本研究采用热改性碳纳米管(CNT)活化PAA降解磺胺甲
唑(SMX),5min内SMX去除率达97%。pH对该体系的处理效果有影响,中性条件下处理效果最佳。通过比较在不同加热温度下制得的CNT对目标污染物的降解效果,确定了最佳改性条件为800℃。采取电子顺磁共振(EPR)、淬灭实验、电化学实验等手段探究了该体系中污染物的降解机理。在热改性CNT/PAA体系中对SMX降解起主要作用的是单线态氧(1O2)而非羟基自由基(·OH),有机自由基起次要作用,电子转移过程(ETP)也为SMX的降解做出贡献。循环实验表明,通过对使用后的CNT再次热改性可以恢复材料表面的缺陷程度,被占据的活性位点再次空出从而参与反应,因此热改性CNT/PAA体系循环使用5次依旧对SMX保持较高的处理效率。本研究聚焦于热改性CNT活化PAA的作用机理及活化位点,为将基于碳材料活化过氧乙酸的高级氧化工艺应用于实际水环境修复提供了更多理论依据。
中图分类号:
杨焱, 阮仁伟, 赵世荣, 钱雅洁. 高温活化强化碳纳米管催化过氧乙酸降解磺胺甲
唑的特性[J]. 化工进展, 2025, 44(10): 6083-6092.
YANG Yan, RUAN Renwei, ZHAO Shirong, QIAN Yajie. Performance and properties of sulfamethoxazole degradation by pyrolyzed carbon nanotube activated peracetic acid[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 6083-6092.
| [1] | CHEN Yuru, DUAN Yanping, ZHANG Zhibo, et al. Comprehensive evaluation of antibiotics pollution the Yangtze River basin, China: Emission, multimedia fate and risk assessment[J]. Journal of Hazardous Materials, 2024, 465: 133247. |
| [2] | 李德军, 吴八一, 李梅秀. 水体中典型抗生素磺胺甲𫫇唑对生物脱氮的影响及机制解析[J]. 四川环境, 2024, 43(2): 173-179. |
| LI Dejun, WU Bayi, LI Meixiu. Impact of sulfamethoxazole - a typical antibiotic in water-on biological denitrification and its mechanism[J]. Sichuan Environment, 2024, 43(2): 173-179. | |
| [3] | 李鑫, 王海芳. 典型磺胺类抗生素在土壤中迁移和降解机制研究[J]. 当代化工, 2024, 53(2): 422-429. |
| LI Xin, WANG Haifang. Study on migration and degradation of typical sulfonamides in soil[J]. Contemporary Chemical Industry, 2024, 53(2): 422-429. | |
| [4] | 张迪雅. 不同方法去除水中磺胺类抗生素的进展研究[J]. 辽宁化工, 2023, 52(12): 1857-1859. |
| ZHANG Diya. Application of anammox in wastewater treatment[J]. Liaoning Chemical Industry, 2023, 52(12): 1857-1859. | |
| [5] | DU Penghui, WANG Junjian, SUN Guodong, et al. Hydrogen atom abstraction mechanism for organic compound oxidation by acetylperoxyl radical in Co(Ⅱ)/peracetic acid activation system[J]. Water Research, 2022, 212: 118113. |
| [6] | WANG Zongping, CHEN Zhenbin, LI Qingbao, et al. Non-radical activation of peracetic acid by powdered activated carbon for the degradation of sulfamethoxazole[J]. Environmental Science & Technology, 2023, 57(28): 10478-10488. |
| [7] | KIM Juyoung, ADHIKARI Koushik. Current trends in kombucha: Marketing perspectives and the need for improved sensory research[J]. Beverages, 2020, 6(1): 15. |
| [8] | ZHOU Xuerong, ZHU Yuan, NIU Qiuya, et al. New notion of biochar: A review on the mechanism of biochar applications in advannced oxidation processes[J]. Chemical Engineering Journal, 2021, 416: 129027. |
| [9] | TENG Tao, WU Xuan, LU Yilin, et al. Flash reforming pyrogenic carbon to graphene for boosting advanced oxidation reaction[J]. Advanced Materials Technologies, 2023, 8(16): 2300236. |
| [10] | YANG Weilu, ZHOU Minghua, LIANG Liang. Highly efficient in situ metal-free electrochemical advanced oxidation process using graphite felt modified with N-doped graphene[J]. Chemical Engineering Journal, 2018, 338: 700-708. |
| [11] | DUAN Xiaoguang, SU Chao, ZHOU Li, et al. Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds[J]. Applied Catalysis B: Environmental, 2016, 194: 7-15. |
| [12] | SHAO Penghui, JING Yunpeng, DUAN Xiaoguang, et al. Revisiting the graphitized nanodiamond-mediated activation of peroxymonosulfate: Singlet oxygenation versus electron transfer[J]. Environmental Science & Technology, 2021, 55(23): 16078-16087. |
| [13] | LI Xingfa, LIANG Dandan, WANG Chaoxu, et al. Insights into the peroxomonosulfate activation on boron-doped carbon nanotubes: Performance and mechanisms[J]. Chemosphere, 2021, 275: 130058. |
| [14] | MIAO Fei, YUE Xiting, CHENG Cheng, et al. Insights into the mechanism of carbocatalysis for peracetic acid activation: Kinetic discernment and active site identification[J]. Water Research, 2022, 227: 119346. |
| [15] | 闫江毅, 丁一汇, 李风亭. 碳纳米管功能化改性的研究进展[J]. 低碳化学与化工, 2024, 49(10): 1-10. |
| YAN Jiangyi, DING Yihui, LI Fengting. Research progress on functional modification of carbon nanotubes[J]. Low-Carbon Chemistry and Chemical Engineering, 2024, 49(10): 1-10. | |
| [16] | REN Wei, XIONG Liangliang, NIE Gang, et al. Insights into the electron-transfer regime of peroxydisulfate activation on carbon nanotubes: The role of oxygen functional groups[J]. Environmental Science & Technology, 2020, 54(2): 1267-1275. |
| [17] | LIU Tongcai, XIAO Shaoze, LI Nan, et al. Water decontamination via nonradical process by nanoconfined Fenton-like catalysts[J]. Nature Communications, 2023, 14(1): 2881. |
| [18] | LIU Yue, WANG Yangyang, LI Xiao, et al. Multi-path accelerating sulfadiazine degradation via peracetic acid oxidation induced by nanoconfined co species: Highlighting electron rearrangement effect[J]. Chemical Engineering Journal, 2024, 494: 153167. |
| [19] | YAO Mingya, ZHANG Shuofeng, XIE Meng, et al. Efficient activation of peracetic acid by cobalt modified nitrogen-doped carbon nanotubes for drugs degradation: Performance and mechanism insight[J]. Chemosphere, 2024, 358: 142277. |
| [20] | YU Zongshun, WU Jianqing, ZHANG Jinfan, et al. Carbon nitride nanotubes anchored with Cu(Ⅰ) triggers peracetic acid activation with visible light for removal of antibiotic contaminants: Probing mechanisms of non-radical pathways and identifying active sites[J]. Journal of Hazardous Materials, 2023, 460: 132401. |
| [21] | WANG Junhui, YU Jiaxing, FU Qi, et al. Unprecedented nonphotomediated hole (h+ ) oxidation system constructed from defective carbon nanotubes and superoxides[J]. ACS Central Science, 2021, 7(2): 355-364. |
| [22] | LIU Shiyu, LAI Cui, LI Bisheng, et al. Heteroatom doping in metal-free carbonaceous materials for the enhancement of persulfate activation[J]. Chemical Engineering Journal, 2022, 427: 131655. |
| [23] | CHENG Xin, GUO Hongguang, ZHANG Yongli, et al. Insights into the mechanism of nonradical reactions of persulfate activated by carbon nanotubes: Activation performance and structure-function relationship[J]. Water Research, 2019, 157: 406-414. |
| [24] | AMALANATHAN M, ARAVIND M, AHMED Nafis, et al. The influence of activated carbon annealing temperature on sunlight-driven photocatalytic dye degradation and biological activity[J]. Inorganic Chemistry Communications, 2022, 146: 110149. |
| [25] | MAO Chih-Chung, WENG Hung-Shan. Effect of heat treatment on photocatalytic activity of titania incorporated with carbon black for degradation of methyl orange[J]. Environmental Progress & Sustainable Energy, 2012, 31(2): 306-317. |
| [26] | YANG Weichun, JIANG Zhi, HU Xiaoxian, et al. Enhanced activation of persulfate by nitric acid/annealing modified multi-walled carbon nanotubes via non-radical process[J]. Chemosphere, 2019, 220: 514-522. |
| [27] | ZHU Shishu, HUANG Xiaochen, MA Fang, et al. Catalytic removal of aqueous contaminants on N-doped graphitic biochars: Inherent roles of adsorption and nonradical mechanisms[J]. Environmental Science & Technology, 2018, 52(15): 8649-8658. |
| [28] | HOU Jifei, XU Lixia, HAN Yuxiang, et al. Deactivation and regeneration of carbon nanotubes and nitrogen-doped carbon nanotubes in catalytic peroxymonosulfate activation for phenol degradation: Variation of surface functionalities[J]. RSC Advances, 2019, 9(2): 974-983. |
| [29] | HU Peidong, SU Hanrui, CHEN Zhenyu, et al. Selective degradation of organic pollutants using an efficient metal-free catalyst derived from carbonized polypyrrole via peroxymonosulfate activation[J]. Environmental Science & Technology, 2017, 51(19): 11288-11296. |
| [30] | WANG Zongping, WANG Jingwen, XIONG Bin, et al. Application of cobalt/peracetic acid to degrade sulfamethoxazole at neutral condition: Efficiency and mechanisms[J]. Environmental Science & Technology, 2020, 54(1): 464-475. |
| [31] | KIM Juhee, ZHANG Tianqi, LIU Wen, et al. Advanced oxidation process with peracetic acid and Fe(Ⅱ) for contaminant degradation[J]. Environmental Science & Technology, 2019, 53(22): 13312-13322. |
| [32] | ZHANG Wei, LI Mu, LIN Lin, et al. Peroxyacetic acid activation by cobalt-doped peanut shell biochar for efficient CBZ degradation: Role of organic radicals, singlet oxygen, and high-valent cobalt species[J]. Separation and Purification Technology, 2024, 330: 125592. |
| [33] | SHEN Wuziyue, YANG Libin, ZHOU Zhe, et al. Activation of peracetic acid by thermally modified carbon nanotubes: Organic radicals contribution and active sites identification[J]. Chemical Engineering Journal, 2023, 474: 145521. |
| [34] | AO Xiuwei, ELORANTA Jussi, HUANG Ching-Hua, et al. Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: A review[J]. Water Research, 2021, 188: 116479. |
| [35] | YAO Keyu, FANG Lei, LIAO Pubin, et al. Ultrasound-activated peracetic acid to degrade tetracycline hydrochloride: Efficiency and mechanism[J]. Separation and Purification Technology, 2023, 306: 122635. |
| [36] | LEE Hongshin, LEE Changha, KIM Jae-Hong. Response to comment on “activation of persulfate by graphitized nanodiamonds for removal of organic compounds”[J]. Environmental Science & Technology, 2017, 51(9): 5353-5354. |
| [37] | CAI Meiquan, SUN Peizhe, ZHANG Liqiu, et al. UV/peracetic acid for degradation of pharmaceuticals and reactive species evaluation[J]. Environmental Science & Technology, 2017, 51(24): 14217-14224. |
| [38] | WANG Xuxu, WANG Ying, ZHAO Chun, et al. Ciprofloxacin removal by ultrasound-enhanced carbon nanotubes/permanganate process: In situ generation of free reactive manganese species via electron transfer[J]. Water Research, 2021, 202: 117393. |
| [39] | LIU Shiyu, LAI Cui, ZHOU Xuerong, et al. Peroxydisulfate activation by sulfur-doped ordered mesoporous carbon: Insight into the intrinsic relationship between defects and 1O2 generation[J]. Water Research, 2022, 221: 118797. |
| [40] | WANG Jingwen, WAN Ying, DING Jiaqi, et al. Thermal activation of peracetic acid in aquatic solution: The mechanism and application to degrade sulfamethoxazole[J]. Environmental Science & Technology, 2020, 54(22): 14635-14645. |
| [41] | 练澎, 张小凤. 碳纳米管制备方法的研究进展[J]. 当代化工, 2015, 44(4): 737-739. |
| LIAN Peng, ZHANG Xiaofeng. Research progress in preparation methods of carbon nanotubes[J]. Contemporary Chemical Industry, 2015, 44(4): 737-739. | |
| [42] | KIM Juhee, DU Penghui, LIU Wen, et al. Cobalt/peracetic acid: Advanced oxidation of aromatic organic compounds by acetylperoxyl radicals[J]. Environmental Science & Technology, 2020, 54(8): 5268-5278. |
| [43] | MULLIGAN Christopher J, BAGALE Sharanappa M, NEWTON Oliver J, et al. Peracetic acid: An atom-economical reagent for Pd-catalyzed acetoxylation of C-H bonds[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 1611-1615. |
| [44] | ROTHBART Sabine, EMBER Erika E, VAN ELDIK Rudi. Mechanistic studies on the oxidative degradation of Orange Ⅱ by peracetic acid catalyzed by simple manganese(Ⅱ) salts. Tuning the lifetime of the catalyst[J]. New Journal of Chemistry, 2012, 36(3): 732-748. |
| [45] | ZHANG Longlong, CHEN Jiabin, ZHANG Yalei, et al. Highly efficient activation of peracetic acid by nano-CuO for carbamazepine degradation in wastewater: The significant role of H2O2 and evidence of acetylperoxy radical contribution[J]. Water Research, 2022, 216: 118322. |
| [1] | 刘克峰, 董卫刚, 胡雪生, 刘陶然, 周华群, 时文, 万子岸, 高飞. 推动二氧化碳捕集、输送、应用和封存发展的政策和举措[J]. 化工进展, 2025, 44(9): 4879-4897. |
| [2] | 薛姿杰, 吴艳, 崔子元, 许关欣, 唐硕, 王彧斐, 马明燕. 基于经济性分析的长周期绿氨合成模型:考虑网电碳排放因子连续变化的影响[J]. 化工进展, 2025, 44(9): 4917-4927. |
| [3] | 张海鹏, 秦珊珊, 王俣萱, 于海彪. 3.0F-Ag x Co催化剂的制备及其催化分解N2O[J]. 化工进展, 2025, 44(9): 4999-5005. |
| [4] | 吴子锋, 王红娟, 王浩帆, 曹永海, 余皓, 彭峰. 电合成碳酸二甲酯的研究进展[J]. 化工进展, 2025, 44(9): 5033-5042. |
| [5] | 程静雯, 陈庆彩, 于博, 刘欢, 徐腾飞, 呼宇坤, 刘思彤. 不同金属掺杂的SnO2基气体传感器对挥发性有机物的检测性能及机制[J]. 化工进展, 2025, 44(9): 5140-5149. |
| [6] | 王睿, 王海澜, 戴若彬, 王志伟. 工业废水深度处理反渗透膜硅污染研究进展:机理、影响因素与控制策略[J]. 化工进展, 2025, 44(9): 5315-5326. |
| [7] | 王文君, 刘瑞鑫, 王军, 张庆磊, 侯立安. 浅析二氧化钛材料可见光降解室内VOCs的研究进展[J]. 化工进展, 2025, 44(9): 5351-5362. |
| [8] | 王晓光, 董青, 郎文丽, 洪翔鑫, 黄振祥, 谭凤玉, 雷以柱, 余子夷. 超低浓度甲烷减排与资源化利用研究进展[J]. 化工进展, 2025, 44(9): 5363-5376. |
| [9] | 操江飞, 雷晓彤, 黄芷怡, 黄建凯, 陈凡, 杨翩翩, 谢春生. 铁氮掺杂碳微球的制备及其活化PS降解罗丹明B[J]. 化工进展, 2025, 44(9): 5406-5415. |
| [10] | 曾金, 高艳, 王赵鹏, 谢雨芸, 刘俊, 梁旗, 王春英. NaYF4:Yb,Tm复合TiO2/Bi2WO6光催化降解2,4-二氯苯氧乙酸机制及产物毒性评价[J]. 化工进展, 2025, 44(9): 5416-5431. |
| [11] | 郑钦升, 张朝晖, 邢相栋, 折媛, 李嘉雨. CH3COOH/H2O2浸取体系下钢渣钙组分浸出机制[J]. 化工进展, 2025, 44(9): 5471-5478. |
| [12] | 王浩, 李梦琪, 王庆吉, 王凌匀, 罗臻, 宋权威, 李兴春, 何绪文. 石油污染场地地下水异位修复短程处理工艺[J]. 化工进展, 2025, 44(9): 5491-5502. |
| [13] | 黄可儿, 刘佳豪, 李昊明, 周天航, 高金森, 蓝兴英. 基于分子动力学模拟的胺溶剂碳捕集过程自扩散系数[J]. 化工进展, 2025, 44(8): 4352-4364. |
| [14] | 刘廷廷, 孟子程, 穆丽静, 陈锡忠, 刘岑凡. 基于图卷积神经网络的乙烯氧化反应器的三维物理场快速预测[J]. 化工进展, 2025, 44(8): 4571-4581. |
| [15] | 杨嘉聪, 程光旭, 贾彤华, 姜召. 煤制甲醇与绿氢高效耦合新工艺模拟及技术经济分析[J]. 化工进展, 2025, 44(8): 4657-4668. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |