化工进展 ›› 2025, Vol. 44 ›› Issue (10): 5911-5925.DOI: 10.16085/j.issn.1000-6613.2024-1326
• 资源与环境化工 • 上一篇
收稿日期:2024-08-14
修回日期:2024-10-11
出版日期:2025-10-25
发布日期:2025-11-10
通讯作者:
高丽,刘希涛
作者简介:赵锡望(2000—),男,博士研究生,研究方向为土壤污染控制。E-mail:zhaoxw@mail.bnu.edu.cn。
基金资助:
ZHAO Xiwang1,2(
), GAO Li1(
), LIANG Zhenming1, LIU Xitao2(
)
Received:2024-08-14
Revised:2024-10-11
Online:2025-10-25
Published:2025-11-10
Contact:
GAO Li, LIU Xitao
摘要:
微波加热相比传统加热在加热方式、活化机理和能耗成本上展现出显著优势,微波协同高级氧化技术(microwave combined advanced oxidation processes,MCAOPs)因具有条件温和、反应可控、处理效率高和适用范围广等特点,在有机污染土壤修复领域广受研究者关注。本文综述了MCAOPs在有机污染土壤修复领域的研究进展:介绍了微波加热技术发展和作用特性;归纳了常见的微波协同高级氧化技术修复污染土壤体系种类;明晰了微波功率和温度、水土比等工艺参数对有机污染物降解的影响;厘清了土壤有机质、土壤矿物和土壤水分对反应体系的影响机制;概述了土壤介质中MCAOPs的反应机制、微波作用机理和环境效应;总结了目前实验室和中试规模尺度的微波装置与优化问题并提出了MCAOPs修复有机污染土壤的放大概念模型。最后,针对当前的研究现状,概述了MCAOPs修复污染土壤领域中有待进一步研究的方向,以期推进MCAOPs理论基础的深入探索和技术的广泛应用。
中图分类号:
赵锡望, 高丽, 梁振明, 刘希涛. 微波协同高级氧化技术修复有机污染土壤的研究进展[J]. 化工进展, 2025, 44(10): 5911-5925.
ZHAO Xiwang, GAO Li, LIANG Zhenming, LIU Xitao. Progress in remediation of organic contaminated soil by microwave combined advanced oxidation processes[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5911-5925.
| 污染物 | 微波反应体系 | 最优反应条件 | 土壤性质 | 降解效果/% | 参考文献 |
|---|---|---|---|---|---|
| 微波协同氧化剂体系 | |||||
| 邻苯二甲酸二丁酯(21.7mg/kg) | MW/过碳酸钠 | Power=480W,[SPC]=0.196g/10g土,T=80℃,t=40min,W/S=4/1① | pH=8.36,SOM=1.11% | 85.14 | [ |
毒死蜱 (100mg/kg) | MW/PS | Power=480W,[PS]=28.57mmol/kg,T=80℃(PDS)/60℃(PMS),t=45min,W/S=1 | pH=7.65,SOM=1.96%,sand=80.27%,silt=12.39%,clay=7.34%③ | >90.00 | [ |
乙基对硫磷 (60mg/kg) | MW/PDS | [PDS]=23.8g/kg,T=100℃,t=60min,W/S=1/10 | pH=7.78 | 75.30 | [ |
| 萘 | MW/PDS | [PDS]=1.0mol/L,T=80℃,t=60min, | pH=6.45,Moi=4.37%,SOM=3.45%,sand=19.37%,silt=71.35%,clay=9.28%④ | 96.50 | [ |
阿特拉津 (50mg/kg) | MW/PDS | Power=400W,[PDS]=24mmol/L,T=80℃,t=60min,W/S=1 | — | 97.90 | [ |
| 对硫磷(50mg/kg) | MW/PDS | Power<900W,[PDS]=2mol/L,T=80℃,t=90min,W/S=1/4 | pH=6.8,sand=35.4%,silt=58.8%,clay=5.8% | 90.03 | [ |
| 菲(1000mg/kg) | MW/PDS | Power=480W,[PDS]=50g/L,T=80℃,t=5min,W/S=5 | pH=7.65,SOM≈2.4%,sand=46%,silt=10%,clay=44% | 约96.00 | [ |
2,4-二氯酚 (500mg/kg) | MW/O3 | Power=750W(C)②,[O3]≈3g/h,T≈110℃,t=10min | pH=7.41,SOM=0.71%,sand=29%,silt=14%,clay=57% | 90.50 | [ |
| 蒽(50mg/kg) | MW/O3 | Power=750W(C),[O3]≈3g/h,T≈110℃,t=10min | pH=7.41,SOM=0.71%,sand=29%,silt=14%,clay=57% | 99.60 | [ |
| 微波协同催化剂-氧化剂体系 | |||||
芘 (50mg/kg) | MW/PDS/β-MnO2 | Power<900W,[PDS]=1.5mol/L,[β-MnO2]=0.10g/5g soil,T=80℃,t=25min,W/S=1/4 | pH=6.8,sand=35.4%,silt=58.8%,clay=5.9% | 81.30 | [ |
芘 (50mg/kg) | MW/PDS/Fe3O4 | [PDS]=1.5mol/L,[Fe3O4]=8g/kg,T=60℃,t=45min,W/S=1/5.6 | pH=6.8,SOM=1.34%,sand=57.1%,silt=34.7%,clay=8.2% | 91.70 | [ |
| 乙基对硫磷(60mg/kg) | MW/PDS/生物炭(Biochar) | [PDS]=23.8g/kg,[Biochar]=30g/kg,T=100℃,t=80min,W/S=1/10 | pH=7.78 | 约95.00 | [ |
毒死蜱 (100mg/kg) | MW/PMS/暖贴固废(HPW) | Power=480W,[PMS]=28.57mmol/kg,[HPW]=10g/kg,T=60℃,t=45min,W/S=1 | pH=7.65,SOM=1.96%,sand=80.27%,silt=12.39%,clay=7.34% | >90.00 | [ |
十溴二苯醚 (20mg/kg) | MW/PDS/Fe@SiC | Power=240W(C),[PDS]=0.5mol/L,[Fe@SiC]=50g/kg,T<95℃,t=20min,W/S=3 | 模拟污染硅藻土 | 90.30 | [ |
| 六氯苯(约167mg/kg) | MW/PDS/Al2O3负载石墨棒 | Power=1100W(C),[PDS]=15g/L,石墨棒尺寸3cm×5cm,t=3min,W/S=2/3 | — | 约89.00 | [ |
| 微波协同高级氧化的其他体系 | |||||
2,4-二氯酚 (500mg/kg) | MW/SiC/nZVI/EDTA | Power=540W,[SiC/nZVI]=2.5g/L,[EDTA]=1.2mmol/L,T=95℃,t=30min,W/S=20 | 模拟污染高岭土 | 约100.00 | [ |
对氯硝基苯 (50mg/kg) | MW/PDS/厌氧 | [PDS]=1.0mol/L,T=60℃,t=60min,W/S=1/5.6 | pH=6.8,SOM=1.34%,sand=57.1%,silt=34.7%,clay=8.2% | 84.30 | [ |
表1 微波协同高级氧化体系对土壤中有机污染物的降解效果
| 污染物 | 微波反应体系 | 最优反应条件 | 土壤性质 | 降解效果/% | 参考文献 |
|---|---|---|---|---|---|
| 微波协同氧化剂体系 | |||||
| 邻苯二甲酸二丁酯(21.7mg/kg) | MW/过碳酸钠 | Power=480W,[SPC]=0.196g/10g土,T=80℃,t=40min,W/S=4/1① | pH=8.36,SOM=1.11% | 85.14 | [ |
毒死蜱 (100mg/kg) | MW/PS | Power=480W,[PS]=28.57mmol/kg,T=80℃(PDS)/60℃(PMS),t=45min,W/S=1 | pH=7.65,SOM=1.96%,sand=80.27%,silt=12.39%,clay=7.34%③ | >90.00 | [ |
乙基对硫磷 (60mg/kg) | MW/PDS | [PDS]=23.8g/kg,T=100℃,t=60min,W/S=1/10 | pH=7.78 | 75.30 | [ |
| 萘 | MW/PDS | [PDS]=1.0mol/L,T=80℃,t=60min, | pH=6.45,Moi=4.37%,SOM=3.45%,sand=19.37%,silt=71.35%,clay=9.28%④ | 96.50 | [ |
阿特拉津 (50mg/kg) | MW/PDS | Power=400W,[PDS]=24mmol/L,T=80℃,t=60min,W/S=1 | — | 97.90 | [ |
| 对硫磷(50mg/kg) | MW/PDS | Power<900W,[PDS]=2mol/L,T=80℃,t=90min,W/S=1/4 | pH=6.8,sand=35.4%,silt=58.8%,clay=5.8% | 90.03 | [ |
| 菲(1000mg/kg) | MW/PDS | Power=480W,[PDS]=50g/L,T=80℃,t=5min,W/S=5 | pH=7.65,SOM≈2.4%,sand=46%,silt=10%,clay=44% | 约96.00 | [ |
2,4-二氯酚 (500mg/kg) | MW/O3 | Power=750W(C)②,[O3]≈3g/h,T≈110℃,t=10min | pH=7.41,SOM=0.71%,sand=29%,silt=14%,clay=57% | 90.50 | [ |
| 蒽(50mg/kg) | MW/O3 | Power=750W(C),[O3]≈3g/h,T≈110℃,t=10min | pH=7.41,SOM=0.71%,sand=29%,silt=14%,clay=57% | 99.60 | [ |
| 微波协同催化剂-氧化剂体系 | |||||
芘 (50mg/kg) | MW/PDS/β-MnO2 | Power<900W,[PDS]=1.5mol/L,[β-MnO2]=0.10g/5g soil,T=80℃,t=25min,W/S=1/4 | pH=6.8,sand=35.4%,silt=58.8%,clay=5.9% | 81.30 | [ |
芘 (50mg/kg) | MW/PDS/Fe3O4 | [PDS]=1.5mol/L,[Fe3O4]=8g/kg,T=60℃,t=45min,W/S=1/5.6 | pH=6.8,SOM=1.34%,sand=57.1%,silt=34.7%,clay=8.2% | 91.70 | [ |
| 乙基对硫磷(60mg/kg) | MW/PDS/生物炭(Biochar) | [PDS]=23.8g/kg,[Biochar]=30g/kg,T=100℃,t=80min,W/S=1/10 | pH=7.78 | 约95.00 | [ |
毒死蜱 (100mg/kg) | MW/PMS/暖贴固废(HPW) | Power=480W,[PMS]=28.57mmol/kg,[HPW]=10g/kg,T=60℃,t=45min,W/S=1 | pH=7.65,SOM=1.96%,sand=80.27%,silt=12.39%,clay=7.34% | >90.00 | [ |
十溴二苯醚 (20mg/kg) | MW/PDS/Fe@SiC | Power=240W(C),[PDS]=0.5mol/L,[Fe@SiC]=50g/kg,T<95℃,t=20min,W/S=3 | 模拟污染硅藻土 | 90.30 | [ |
| 六氯苯(约167mg/kg) | MW/PDS/Al2O3负载石墨棒 | Power=1100W(C),[PDS]=15g/L,石墨棒尺寸3cm×5cm,t=3min,W/S=2/3 | — | 约89.00 | [ |
| 微波协同高级氧化的其他体系 | |||||
2,4-二氯酚 (500mg/kg) | MW/SiC/nZVI/EDTA | Power=540W,[SiC/nZVI]=2.5g/L,[EDTA]=1.2mmol/L,T=95℃,t=30min,W/S=20 | 模拟污染高岭土 | 约100.00 | [ |
对氯硝基苯 (50mg/kg) | MW/PDS/厌氧 | [PDS]=1.0mol/L,T=60℃,t=60min,W/S=1/5.6 | pH=6.8,SOM=1.34%,sand=57.1%,silt=34.7%,clay=8.2% | 84.30 | [ |
| 微波反应体系 | 主要活性物种 | 氧化电位 | 活性物种寿命 | 其他可能活性物种 | 参考文献 |
|---|---|---|---|---|---|
| MW/PDS | SO4·- | 2.5~3.1V(vs. NHE) | 30~40μs | OH·,O2·-,1O2 | [ |
| MW/PMS | 1O2 | 0.81~2.2V(vs. NHE) | 3.5μs | SO4·-,OH· | [ |
| MW/O3 | O3 | 2.07V(vs. NHE) | 20min | OH· | [ |
| MW/SPC或UHP | CO3·-(SPC),OH· | 1.57~1.78(vs. NHE)(CO3·-) 1.8~2.7V(vs. NHE)(OH·) | 1μs(OH·) — | O2·- | [ |
表2 典型微波强化高级氧化体系修复污染土壤中的主要活性物种
| 微波反应体系 | 主要活性物种 | 氧化电位 | 活性物种寿命 | 其他可能活性物种 | 参考文献 |
|---|---|---|---|---|---|
| MW/PDS | SO4·- | 2.5~3.1V(vs. NHE) | 30~40μs | OH·,O2·-,1O2 | [ |
| MW/PMS | 1O2 | 0.81~2.2V(vs. NHE) | 3.5μs | SO4·-,OH· | [ |
| MW/O3 | O3 | 2.07V(vs. NHE) | 20min | OH· | [ |
| MW/SPC或UHP | CO3·-(SPC),OH· | 1.57~1.78(vs. NHE)(CO3·-) 1.8~2.7V(vs. NHE)(OH·) | 1μs(OH·) — | O2·- | [ |
| [1] | YE Shujing, ZENG Guangming, WU Haipeng, et al. Co-occurrence and interactions of pollutants, and their impacts on soil remediation—A review[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(16): 1528-1553. |
| [2] | ZHAO Xiwang, LIU Xitao, ZHANG Zhenguo, et al. Mechanochemical remediation of contaminated soil: A review[J]. Science of the Total Environment, 2024, 946: 174117. |
| [3] | U.S. Environmental Protection AGENCY. Superfund: National priorities list (NPL) (2018)[EB/OL]. [2024-7-29]. . |
| [4] | 周东美, 王慎强, 陈怀满. 土壤中有机污染物-重金属复合污染的交互作用[J]. 土壤与环境, 2000, 9(2): 143-145. |
| ZHOU Dongmei, WANG Shenqiang, CHEN Huaiman. Interaction of organic pollutants and heavy metal in soil[J]. Soil and Environmental Sciences, 2000, 9(2): 143-145. | |
| [5] | LU Yonglong, SONG Shuai, WANG Ruoshi, et al. Impacts of soil and water pollution on food safety and health risks in China[J]. Environment International, 2015, 77: 5-15. |
| [6] | 王树桥, 袁京周, 郭婧涵, 等. 基于电磁场模拟微波对土壤苯系污染物的脱附研究[J]. 环境工程, 2024, 42(3): 190-198. |
| WANG Shuqiao, YUAN Jingzhou, GUO Jinghan, et al. Desorption of soil benzene series contaminants using electromagnetic field simulated microwaves[J]. Environmental Engineering, 2024, 42(3): 190-198. | |
| [7] | 易辰博. 微波热修复有机物污染场地土壤技术进展[J]. 江西科学, 2015, 33(1): 116-121. |
| YI Chenbo. Microwave introduced thermal remediation technologies of organic contaminated soil[J]. Jiangxi Science, 2015, 33(1): 116-121. | |
| [8] | 吴雷, 吴红艳, 邱丝雯, 等. 有机污染土壤微波修复技术中吸波剂的研究进展[J]. 材料导报, 2023, 37(19): 266-274. |
| WU Lei, WU Hongyan, QIU Siwen, et al. Advances on absorbers used in microwave remediation technology of organic contaminated soil[J]. Materials Reports, 2023, 37(19): 266-274. | |
| [9] | JONES D A, LELYVELD T P, MAVROFIDIS S D, et al. Microwave heating applications in environmental engineering—A review[J]. Resources, Conservation and Recycling, 2002, 34(2): 75-90. |
| [10] | ZHOU Qixing, LI Wei, HUA Tao. Removal of organic matter from landfill leachate by advanced oxidation processes: A review[J]. International Journal of Chemical Engineering, 2010, 2010: 270532. |
| [11] | CAO Menghan, XU Peng, TIAN Ke, et al. Recent advances in microwave-enhanced advanced oxidation processes (MAOPs) for environmental remediation: A review[J]. Chemical Engineering Journal, 2023, 471: 144208. |
| [12] | FENG Yan, TAO Yue, MENG Qingqiang, et al. Microwave-combined advanced oxidation for organic pollutants in the environmental remediation: An overview of influence, mechanism, and prospective[J]. Chemical Engineering Journal, 2022, 441: 135924. |
| [13] | HU Limin, WANG Peng, SHEN Tianyao, et al. The application of microwaves in sulfate radical-based advanced oxidation processes for environmental remediation: A review[J]. Science of the Total Environment, 2020, 722: 137831. |
| [14] | GEDYE Richard, SMITH Frank, WESTAWAY Kenneth, et al. The use of microwave ovens for rapid organic synthesis[J]. Tetrahedron Letters, 1986, 27(3): 279-282. |
| [15] | SINGH Sandeep K, COLLINS Jonathan M. New developments in microwave-assisted solid phase peptide synthesis[M]. New York: Springer, 2019. |
| [16] | LI Yanshuo, YANG Weishen. Microwave synthesis of zeolite membranes: A review[J]. Journal of Membrane Science, 2008, 316(1/2): 3-17. |
| [17] | DESAI Bimbisar, OLIVER. Kappe C Microwave-assisted synthesis involving immobilized catalysts[M]//Topics in current chemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004: 177-208. |
| [18] | KIM C J. Effects of convection-oven and microwave-oven drying on removal of alachlor residues in a fabric structure[J]. Bulletin of Environmental Contamination and Toxicology, 1989, 43(6): 904-909. |
| [19] | ABRAMOVITCH Rudolph A, HUANG Bangzhou, ABRAMOVITCH Dorota A, et al. In situ decomposition of PCBs in soil using microwave energy[J]. Chemosphere, 1999, 38(10): 2227-2236. |
| [20] | HORIKOSHI Satoshi, HIDAKA Hisao, SERPONE Nick. Environmental remediation by an integrated microwave/UV illumination technique. 3. A microwave-powered plasma light source and photoreactor to degrade pollutants in aqueous dispersions of TiO2 illuminated by the emitted UV/visible radiation[J]. Environmental Science & Technology, 2002, 36(23): 5229-5237. |
| [21] | LI Hong, ZHANG Chunyu, PANG Chuanrui, et al. The advances in the special microwave effects of the heterogeneous catalytic reactions[J]. Frontiers in Chemistry, 2020, 8: 355-362. |
| [22] | MENG Fanbin, WANG Huagao, HUANG Fei, et al. Graphene-based microwave absorbing composites: A review and prospective[J]. Composites B: Engineering, 2018, 137: 260-277. |
| [23] | HU Yuanan, HE Yuanzhen, CHENG Hefa. Microwave-induced degradation of N-nitrosodimethylamine (NDMA) sorbed in zeolites: Effect of mineral surface chemistry and non-thermal effect of microwave[J]. Journal of Cleaner Production, 2018, 174: 1224-1233. |
| [24] | 马双忱, 姚娟娟, 金鑫, 等. 微波化学中微波的热与非热效应研究进展[J]. 化学通报, 2011, 74(1): 41-46. |
| MA Shuangchen, YAO Juanjuan, JIN Xin, et al. Progress for thermal and non-thermal effects of microwave chemistry[J]. Chemistry, 2011, 74(1): 41-46. | |
| [25] | Beatriz GARCÍA-BAÑOS, CHIARIOTTI Paolo, NAPOLITANO Rachele, et al. Dielectric and optical evaluation of high-emissivity coatings for temperature measurements in microwave applications[J]. Measurement, 2022, 198: 111363. |
| [26] | 金凤明, 孙晓娟, 郭登峰, 等. 微波照射下合成硫代硫酸钠[J]. 江苏石油化工学院学报, 2000, 12(4): 5-7. |
| JIN Fengming, SUN Xiaojuan, GUO Dengfeng, et al. The synthesis of sodium thiosulfate under radiation of microwave[J]. Journal of Jiangsu Institute of Petrochemical Technology, 2000, 12(4): 5-7. | |
| [27] | 李天天, 夏龙, 黄小萧, 等. 介电损耗型微波吸收材料的研究进展[J]. 材料工程, 2021, 49(6): 1-13. |
| LI Tiantian, XIA Long, HUANG Xiaoxiao, et al. Progress in dielectric loss microwave absorbing materials[J]. Journal of Materials Engineering, 2021, 49(6): 1-13. | |
| [28] | GAO Jiong, DUAN Xiaodi, Kevin O’SHEA, et al. Degradation and transformation of bisphenol A in UV/sodium percarbonate: Dual role of carbonate radical anion[J]. Water Research, 2020, 171: 115394. |
| [29] | LIU Xin, HE Sen, YANG Yuan, et al. A review on percarbonate-based advanced oxidation processes for remediation of organic compounds in water[J]. Environmental Research, 2021, 200: 111371. |
| [30] | ZHOU Zhou, LIU Xitao, SUN Ke, et al. Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: A review[J]. Chemical Engineering Journal, 2019, 372: 836-851. |
| [31] | XI Bai, SHI Qingzhong. Removement of thiocyanate from industrial wastewater by microwave-Fenton oxidation method[J]. Journal of Environmental Sciences, 2013, 25: S201-S204. |
| [32] | CHEN Weiming, ZHANG Aiping, GU Zhepei, et al. Enhanced degradation of refractory organics in concentrated landfill leachate by Fe0/H2O2 coupled with microwave irradiation[J]. Chemical Engineering Journal, 2018, 354: 680-691. |
| [33] | Kwang Victor LO, TAN Hanji, TUNILE Indre, et al. Microwave enhanced advanced oxidation treatment of municipal wastewater sludge[J]. Chemical Engineering and Processing: Process Intensification, 2018, 128: 143-148. |
| [34] | 郑友平, 林亲铁, 罗昊昱, 等. 微波强化高级氧化降解土壤中邻苯二甲酸二丁酯[J]. 环境工程学报, 2017, 11(12): 6518-6523. |
| ZHENG Youping, LIN Qintie, LUO Haoyu, et al. Degradation of dibutyl phthalate in soil by microwave-assisted oxidation[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6518-6523. | |
| [35] | SHANG Xiao, LIU Xitao, REN Wenbo, et al. Comparison of peroxodisulfate and peroxymonosulfate activated by microwave for degradation of chlorpyrifos in soil: Effects of microwaves, reaction mechanisms and degradation products[J]. Separation and Purification Technology, 2023, 306: 122682. |
| [36] | MIAO Duo, ZHAO Song, ZHU Kecheng, et al. Activation of persulfate and removal of ethyl-parathion from soil: Effect of microwave irradiation[J]. Chemosphere, 2020, 253: 126679. |
| [37] | 袁京周, 韩梦非, 张阳, 等. 微波诱导过硫酸盐修复萘污染土壤的模拟优化[J]. 环境工程学报, 2023, 17(3): 909-919. |
| YUAN Jingzhou, HAN Mengfei, ZHANG Yang, et al. Simulation and optimization of naphthalene polluted soil remediation by microwave induced persulfate[J]. Chinese Journal of Environmental Engineering, 2023, 17(3): 909-919. | |
| [38] | QU Jianhua, LIU Ruixin, BI Xuewei, et al. Remediation of atrazine contaminated soil by microwave activated persulfate system: Performance, mechanism and DFT calculation[J]. Journal of Cleaner Production, 2023, 399: 136546. |
| [39] | KAN Hongshuai, WANG Tiecheng, YU Jinxian, et al. Remediation of organophosphorus pesticide polluted soil using persulfate oxidation activated by microwave[J]. Journal of Hazardous Materials, 2021, 401: 123361. |
| [40] | PENG Libin, DENG Dayi, YE Fangting. Efficient oxidation of high levels of soil-sorbed phenanthrene by microwave-activated persulfate: Implication for in situ subsurface remediation engineering[J]. Journal of Soils and Sediments, 2016, 16(1): 28-37. |
| [41] | 王菲. 微波强化臭氧氧化技术去除土壤中的2,4-二氯酚和蒽[D]. 南京: 南京大学, 2017. |
| WANG Fei. Degradation of 2,4-DCP and anthracene in soil by microwave enhanced ozonation[D]. Nanjing: Nanjing University, 2017. | |
| [42] | KAN Hongshuai, WU Dan, WANG Tiecheng, et al. Crystallographic manganese oxides enhanced pyrene contaminated soil remediation in microwave activated persulfate system[J]. Chemical Engineering Journal, 2021, 417: 127916. |
| [43] | WU Dan, KAN Hongshuai, ZHANG Ying, et al. Pyrene contaminated soil remediation using microwave/magnetite activated persulfate oxidation[J]. Chemosphere, 2022, 286: 131787. |
| [44] | ZHAO Song, LIU Jinbo, MIAO Duo, et al. Activation of persulfate for the degradation of ethyl-parathion in soil: Combined effects of microwave with biochar[J]. Journal of Environmental Management, 2024, 351: 119930. |
| [45] | SHANG Xiao, LIU Xitao, MA Xiaoyu, et al. Efficient degradation of chlorpyrifos and intermediate in soil by a novel microwave induced advanced oxidation process: A two-stage reaction[J]. Journal of Hazardous Materials, 2024, 464: 133001. |
| [46] | LIU Yuxin, LIN Qintie, ZHENG Junli, et al. Magnetic Fe-doped silicon carbide induced microwave activated persulfate for decabromodiphenyl ether removal: Mechanism and unique degradation pathway[J]. Chemosphere, 2024, 349: 140841. |
| [47] | CALVERT Craig A, SUIB Steven L. An initial study into the use of microwave remediation of hexachlorobenzene treated soil using selected oxidants and coated graphite rods[J]. Journal of Soils and Sediments, 2007, 7(3): 147-152. |
| [48] | 周海燕. 有机氯污染土壤的类Fenton氧化处理与机理研究[D]. 武汉: 华中科技大学, 2015. |
| ZHOU Haiyan. Remediation and mechanism study of chlorinated organic compounds contaminated soils by Fenton-like system[D]. Wuhan: Huazhong University of Science and Technology, 2015. | |
| [49] | AN Jiutao, WANG Qi, SHANG Xiaopu, et al. Aerobic and anaerobic regulation induced different degradation behaviors of parachloronitrobenzene in soil by microwave activated persulfate oxidation[J]. Separation and Purification Technology, 2022, 295: 121333. |
| [50] | 韩天依. 微波活化过硫酸盐降解土壤中阿特拉津的效能研究[D]. 哈尔滨: 东北农业大学, 2022. |
| HAN Tianyi. Study on degradation efficiency of atrazine in soil by microwave activated persulfate[D]. Harbin: Northeast Agricultural University, 2022. | |
| [51] | HU Limin, ZHANG Guangshan, WANG Qiao, et al. Effect of microwave heating on persulfate activation for rapid degradation and mineralization of p-nitrophenol[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11662-11671. |
| [52] | REN Wei, CHENG Cheng, SHAO Penghui, et al. Origins of electron-transfer regime in persulfate-based nonradical oxidation processes[J]. Environmental Science & Technology, 2022, 56(1): 78-97. |
| [53] | RANC B, FAURE P, CROZE V, et al. Selection of oxidant doses for in situ chemical oxidation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs): A review[J]. Journal of Hazardous Materials, 2016, 312: 280-297. |
| [54] | XUE Chao, MAO Yanpeng, WANG Wenlong, et al. Current status of applying microwave-associated catalysis for the degradation of organics in aqueous phase—A review[J]. Journal of Environmental Sciences, 2019, 81: 119-135. |
| [55] | HE Lizhi, ZHONG Huan, LIU Guangxia, et al. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China[J]. Environmental Pollution, 2019, 252: 846-855. |
| [56] | CRAVOTTO Giancarlo, DI CARLO Stefano, ONDRUSCHKA Bernd, et al. Decontamination of soil containing POPs by the combined action of solid Fenton-like reagents and microwaves[J]. Chemosphere, 2007, 69(8): 1326-1329. |
| [57] | 李琋, 罗廷, 王雅璇, 等. 苯并[a]芘污染土壤的臭氧氧化研究[J]. 环境科学与技术, 2020, 43(4): 171-177. |
| LI Xi, LUO Ting, WANG Yaxuan, et al. Removal of benzo[a]pyrene in contaminated soil by ozonation[J]. Environmental Science & Technology, 2020, 43(4): 171-177. | |
| [58] | WANG Linling, LIU Wengui, ZHONG Delai, et al. Enhanced degradation of chloramphenicol in soil using activated carbon fiber supported nanoscale zerovalent iron coupled with microwave irradiation[J]. Environmental Engineering and Management Journal, 2016, 15(10): 2215-2221. |
| [59] | HU Limin, WANG Peng, ZHANG Guangshan, et al. Enhanced persulfate oxidation of organic pollutants and removal of total organic carbons using natural magnetite and microwave irradiation[J]. Chemical Engineering Journal, 2020, 383: 123140. |
| [60] | 阚红帅. 微波活化过硫酸盐氧化修复典型有机污染土壤的研究[D]. 咸阳: 西北农林科技大学, 2021. |
| KAN Hongshuai. Study on remediation of typical organic contaminated soil by microwave-activated persulfate oxidation[D]. Xianyang: Northwest A&Forestry Technology University, 2021. | |
| [61] | 苗铎. 微波活化过硫酸盐降解土壤中乙基对硫磷/多环芳烃性能及机理[D]. 咸阳: 西北农林科技大学, 2021. |
| MIAO Duo. Performance and mechanism of microwave-activated persulfate degradation of ethyl parathion/polycyclic aromatic hydrocarbons in soil[D]. Xianyang: Northwest A&Forestry Technology University, 2021. | |
| [62] | 乌丹. 微波/过硫酸盐修复典型有机污染土壤的强化策略研究[D]. 咸阳: 西北农林科技大学, 2022. |
| WU Dan. Study on strengthening strategy of microwave/persulfate remediation of typical organic contaminated soil[D]. Xianyang: Northwest A&Forestry Technology University, 2022. | |
| [63] | QI Chengdu, LIU Xitao, LIN Chunye, et al. Activation of peroxymonosulfate by microwave irradiation for degradation of organic contaminants[J]. Chemical Engineering Journal, 2017, 315: 201-209. |
| [64] | 刘云, 吴平霄. 粘土矿物与重金属界面反应的研究进展[J]. 环境污染治理技术与设备, 2006(1): 17-21. |
| LIU Yun, WU Pingxiao. Summary of research on the interface reaction between heavy metals and clay[J]. Techniques and Equipment for Environmental Pollution Control, 2006(1): 17-21. | |
| [65] | FANG Guodong, CHEN Xiru, WU Wenhui, et al. Mechanisms of interaction between persulfate and soil constituents: Activation, free radical formation, conversion, and identification[J]. Environmental Science & Technology, 2018, 52(24): 14352-14361. |
| [66] | PARK Chang-Hwan, MONTZKA Carsten, JAGDHUBER Thomas, et al. A dielectric mixing model accounting for soil organic matter[J]. Vadose Zone Journal, 2019, 18(1): 190036. |
| [67] | 潘金梅, 张立新, 吴浩然, 等. 土壤有机物质对土壤介电常数的影响[J]. 遥感学报, 2012, 16(1): 1-24. |
| PAN Jinmei, ZHANG Lixin, WU Haoran, et al. Effect of soil organic substance on soil dielectric constant[J]. Journal of Remote Sensing, 2012, 16(1): 1-24. | |
| [68] | GENG Wei, WEI Yan, KE Yibing, et al. Unveiling molecular transformations of soil organic matter after remediation by chemical oxidation based on ESI-FT-ICR-MS analysis[J]. ACS ES&T Engineering, 2023, 3(6): 831-840. |
| [69] | WU Songlin, YOU Fang, BOUGHTON Berin, et al. Chemodiversity of dissolved organic matter and its molecular changes driven by rhizosphere activities in Fe ore tailings undergoing eco-engineered pedogenesis[J]. Environmental Science & Technology, 2021, 55(19): 13045-13060. |
| [70] | DONG Xiaona, YANG Xiaoxue, HUA Sheng, et al. Unraveling the mechanisms for persulfate-based remediation of triphenyl phosphate-contaminated soils: Complicated soil constituent effects on the formation and propagation of reactive oxygen species[J]. Chemical Engineering Journal, 2021, 426: 130662. |
| [71] | REN Xiaoya, ZENG Guangming, TANG Lin, et al. Sorption, transport and biodegradation—An insight into bioavailability of persistent organic pollutants in soil[J]. Science of the Total Environment, 2018, 610: 1154-1163. |
| [72] | CHEN Kexin, LIANG Jun, XU Xiaoyun, et al. Roles of soil active constituents in the degradation of sulfamethoxazole by biochar/persulfate: Contrasting effects of iron minerals and organic matter[J]. Science of the Total Environment, 2022, 853: 158532. |
| [73] | LI Wei, OROZCO Ruben, CAMARGOS Natalia, et al. Mechanisms on the impacts of alkalinity, pH, and chloride on persulfate-based groundwater remediation[J]. Environmental Science & Technology, 2017, 51(7): 3948-3959. |
| [74] | LIANG Jun, DUAN Xiaoguang, XU Xiaoyun, et al. Critical functions of soil components for in situ persulfate oxidation of sulfamethoxazole: Inherent Fe(Ⅱ) minerals-coordinated nonradical pathway[J]. Environmental Science & Technology, 2024, 58(1): 915-924. |
| [75] | AHMAD Mushtaque, TEEL Amy L, WATTS Richard J. Persulfate activation by subsurface minerals[J]. Journal of Contaminant Hydrology, 2010, 115(1/2/3/4): 34-45. |
| [76] | WANG Baolei, WU Qian, FU Yonggang, et al. A review on carbon/magnetic metal composites for microwave absorption[J]. Journal of Materials Science & Technology, 2021, 86: 91-109. |
| [77] | SHANG Xiao, LIU Xitao, MA Xiaoyu, et al. Roles of soil minerals in the degradation of chlorpyrifos and its intermediate by microwave activated peroxymonosulfate[J]. Science of the Total Environment, 2024, 947: 174654. |
| [78] | DI Pingkuan, CHANG Daniel P Y, DWYER Harry A. Heat and mass transfer during microwave steam treatment of contaminated soils[J]. Journal of Environmental Engineering, 2000, 126(12): 1108-1115. |
| [79] | PELUFFO Marina, MORA Verónica C, MORELLI Irma S, et al. Persulfate treatments of phenanthrene-contaminated soil: Effect of the application parameters[J]. Geoderma, 2018, 317: 8-14. |
| [80] | LI Yongtao, LI Dan, LAI Lianjue, et al. Remediation of petroleum hydrocarbon contaminated soil by using activated persulfate with ultrasound and ultrasound/Fe[J]. Chemosphere, 2020, 238: 124657. |
| [81] | ZHU Changyin, WANG Dixiang, ZHU Fengxiao, et al. Rapid DDTs degradation by thermally activated persulfate in soil under aerobic and anaerobic conditions: Reductive radicals vs. oxidative radicals[J]. Journal of Hazardous Materials, 2021, 402: 123557. |
| [82] | WANG Yue, LIN Yan, HE Shanying, et al. Singlet oxygen: Properties, generation, detection, and environmental applications[J]. Journal of Hazardous Materials, 2024, 461: 132538. |
| [83] | LI Yao, LIU Haibo, XIE Yong, et al. Preparation, characterization and physicochemical properties of Konjac glucomannan depolymerized by ozone assisted with microwave treatment[J]. Food Hydrocolloids, 2021, 119: 106878. |
| [84] | ZILBERG Shmuel, MIZRAHI Amir, MEYERSTEIN Dan, et al. Carbonate and carbonate anion radicals in aqueous solutions exist as CO3(H2O)6 2- and CO3(H2O)6·- respectively: The crucial role of the inner hydration sphere of anions in explaining their properties[J]. Physical Chemistry Chemical Physics, 2018, 20(14): 9429-9435. |
| [85] | GAYATHRI P V, YESODHARAN Suguna, YESODHARAN E P. Microwave/Persulphate assisted ZnO mediated photocatalysis (MW/PS/UV/ZnO) as an efficient advanced oxidation process for the removal of RhB dye pollutant from water[J]. Journal of Environmental Chemical Engineering, 2019, 7(4): 103122. |
| [86] | WANG Nannan, HU Qi, DU Xinyuan, et al. Study on decolorization of Rhodamine B by raw coal fly ash catalyzed Fenton-like process under microwave irradiation[J]. Advanced Powder Technology, 2019, 30(10): 2369-2378. |
| [1] | 操江飞, 雷晓彤, 黄芷怡, 黄建凯, 陈凡, 杨翩翩, 谢春生. 铁氮掺杂碳微球的制备及其活化PS降解罗丹明B[J]. 化工进展, 2025, 44(9): 5406-5415. |
| [2] | 曾金, 高艳, 王赵鹏, 谢雨芸, 刘俊, 梁旗, 王春英. NaYF4:Yb,Tm复合TiO2/Bi2WO6光催化降解2,4-二氯苯氧乙酸机制及产物毒性评价[J]. 化工进展, 2025, 44(9): 5416-5431. |
| [3] | 叶晓生, 袁婷, 贾鑫, 任庆霞. 多元复合纳米材料去除微囊藻毒素-LR研究进展[J]. 化工进展, 2025, 44(7): 4144-4157. |
| [4] | 罗司玲, 艾建平, 李文魁, 王翼, 程丽红, 万芸, 黄隆, 李喜宝. 高级氧化技术降解典型抗生素的研究进展[J]. 化工进展, 2025, 44(7): 4169-4189. |
| [5] | 高君, 孙晓杰, 董滨. 不同氮源基质厌氧消化过程中氮转化及微生态的差异揭示污泥蛋白类物质的降解瓶颈[J]. 化工进展, 2025, 44(7): 4190-4201. |
| [6] | 马丙瑞, 段学斌, 陈澄, 王松雪, 陈琳, 王守成, 李金成, 武桂芝, 闫博引. UV-氯联用降解卡马西平动力学及活性氯物种的功能[J]. 化工进展, 2025, 44(7): 4212-4222. |
| [7] | 王鑫颖, 李爱朋, 苏文蕊, 费强. 木质素降解酶人工调控的研究进展[J]. 化工进展, 2025, 44(5): 2694-2704. |
| [8] | 付东龙, 冯冠晴, 徐心泉, 陆振谱, 裴春雷, 巩金龙. 塑料催化资源化利用研究进展[J]. 化工进展, 2025, 44(5): 2758-2766. |
| [9] | 张绎如, 韩东梅, 马伟芳. 铁基复合卤氧化铋磁性材料强化可见光催化处理难降解有机废水研究进展[J]. 化工进展, 2025, 44(4): 2258-2273. |
| [10] | 牛经纬, 陈孝杨, 张健, 周育智, 陈敏. 活化过硫酸盐降解土壤典型环境内分泌干扰物[J]. 化工进展, 2025, 44(4): 2285-2296. |
| [11] | 张佩, 高莉宁, 丁思晴, 李立, 祝锡爇, 何锐. g-C3N4/TiO2异质结光催化剂的制备及其对NO的降解性能[J]. 化工进展, 2025, 44(4): 2045-2056. |
| [12] | 单雪影, 李玲玉, 张濛, 张家傅, 李锦春. 阻燃环氧树脂/低分子聚苯醚材料的制备及性能[J]. 化工进展, 2025, 44(3): 1533-1541. |
| [13] | 李洪慧, 李青云, 李梅, 方艺燕, 沈慧婷, 林宏飞. 生物法处理典型难降解铁氰络合物[J]. 化工进展, 2025, 44(2): 1163-1169. |
| [14] | 杨群, 李红艳, 张峰, 毛立波, 崔佳丽, 董颖虹, 郭紫瑞. 钴氮共掺杂废菌棒生物炭活化PMS去除水中加替沙星[J]. 化工进展, 2025, 44(2): 1088-1099. |
| [15] | 张亚婷, 马小梅, 李可可, 贾嘉, 陈萌, 代亮, 高希桐. CDs/g-C3N4异质结构筑及其在光催化领域的应用[J]. 化工进展, 2025, 44(10): 5751-5763. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |