| [1] |
DOHERTY Simon, KNIGHT Julian G, BACKHOUSE Tom, et al. Highly selective and solvent-dependent reduction of nitrobenzene to N-phenylhydroxylamine, azoxybenzene, and aniline catalyzed by phosphino-modified polymer immobilized ionic liquid-stabilized AuNPs[J]. ACS Catalysis, 2019, 9(6): 4777-4791.
|
| [2] |
徐天缘, 郑茜, 王连娟, 等. 焦粉高效活化过硫酸盐对苯胺的降解性能[J]. 化工进展, 2022, 41(6): 3314-3323.
|
|
XU Tianyuan, ZHENG Xi, WANG Lianjuan, et al. Persulfate activation by coke powder for aniline degradation[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3314-3323.
|
| [3] |
王敏嘉, 周少东, 阮建成, 等. 氯代硝基苯选择性加氢催化剂研究现状与进展[J]. 化工进展, 2021, 40(8): 4223-4230.
|
|
WANG Minjia, ZHOU Shaodong, RUAN Jiancheng, et al. Progress in the research of chloronitrobenzene selective hydrogenation catalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4223-4230
|
| [4] |
Olga MARCHUT-MIKOŁAJCZYK, Piotr DROŻDŻYŃSKI, JANUSZEWICZ Bartłomiej, et al. Degradation of ozonized tire rubber by aniline—Degrading Candida methanosorbosa BP6 strain[J]. Journal of Hazardous Materials, 2019, 367: 8-14.
|
| [5] |
SEKI Masahiko, TAKAHASHI Yusuke. Regioselective C—H azidation of anilines and application to synthesis of key intermediate for pharmaceutical[J]. The Journal of Organic Chemistry, 2021, 86(11): 7842-7848.
|
| [6] |
WANG Hao, LIU Xiaohao, XU Guangyue, et al. In situ synthesis of Fe-N-C catalysts from cellulose for hydrogenation of nitrobenzene to aniline[J]. Chinese Journal of Catalysis, 2019, 40(10): 1557-1565.
|
| [7] |
SONG Jiajia, HUANG Zhenfeng, PAN Lun, et al. Oxygen-deficient tungsten oxide as versatile and efficient hydrogenation catalyst[J]. ACS Catalysis, 2015, 5(11): 6594-6599.
|
| [8] |
XIA Ziyi, WANG Bowei, LI Jiayi, et al. Metal-free hydrogenation with formic acid over N-oped carbon[J]. New Journal of Chemistry, 2023, 47(12): 5621-5624.
|
| [9] |
TANG Jinsheng, ZHANG Suoshu, CHEN Xue, et al. Highly efficient catalytic reduction of nitrobenzene using Cu@C based on a novel Cu-MOF precursor[J]. Catalysts, 2023, 13(6): 956.
|
| [10] |
LUO Shicheng, LONG Yu, LIANG Kun, et al. Unsaturated Mo in Mo4O4N3 for efficient catalytic transfer hydrogenation of nitrobenzene using stoichiometric hydrazine hydrate[J]. Green Chemistry, 2021, 23(21): 8545-8553.
|
| [11] |
MA Yanshuang, ZHANG Liyun, SHI Wen, et al. Facile-fabricated iron oxide nanorods as a catalyst for hydrogenation of nitrobenzene[J]. Chinese Chemical Letters, 2019, 30(1): 183-186.
|
| [12] |
HU Xiwei, LONG Yu, FAN Mengying, et al. Two-dimensional covalent organic frameworks as self-template derived nitrogen-doped carbon nanosheets for eco-friendly metal-free catalysis[J]. Applied Catalysis B: Environmental, 2019, 244: 25-35.
|
| [13] |
HUANG Haigen, TAN Mingwu, WANG Xueguang, et al. Synthesis of mesoporous γ-alumina-supported Co-based catalysts and their catalytic performance for chemoselective reduction of nitroarenes[J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5413-5428.
|
| [14] |
MA Zongyan, CHEN Jing, CHEN Ming, et al. Magnetically reusable carbon nanotube coated Co-based catalysts towards highly efficient transfer hydrogenation of nitroarenes[J]. ChemCatChem, 2024, 16(16): e202400336.
|
| [15] |
Young-Si JUN, LEE Eun Zoo, WANG Xinchen, et al. From melamine-cyanuric acid supramolecular aggregates to carbon nitride hollow spheres[J]. Advanced Functional Materials, 2013, 23(29): 3661-3667.
|
| [16] |
王静. 咪唑功能化有机—无机杂化材料固载磷钼杂多化合物催化剂的制备及烯烃环氧化性能[D]. 长春: 吉林大学, 2014.
|
|
WANG Jing. Preparation of imidazole functionalized organic-inorganic hybrid material supported phosphomolybdic heteropoly catalyst and its olefin epoxidation performance[D]. Changchun: Jilin University, 2014.
|
| [17] |
SONG Xiaojing, ZHU Wanchun, LI Kaige, et al. Epoxidation of olefins with oxygen/isobutyraldehyde over transition-metal-substituted phosphomolybdic acid on SBA-15[J]. Catalysis Today, 2016, 259: 59-65.
|
| [18] |
PATEL Anjali, PATHAN Soyeb. Keggin-type cesium salt of first series transition metal-substituted phosphomolybdates: One-pot easy synthesis, structural, and spectral analysis[J]. Journal of Coordination Chemistry, 2012, 65(17): 3122-3132.
|
| [19] |
谢远江, 罗明洪, 夏克坚. 功能化石墨烯多层膜载金催化剂的制备及其对肼的电催化氧化[J]. 复合材料学报, 2020, 37(7): 1695-1702.
|
|
XIE Yuanjiang, LUO Minghong, XIA Kejian. Preparation of functionalized graphene multilayer films supported Au catalyst and its electro-oxidation for hydrazine[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1695-1702.
|
| [20] |
张素风, 赵东艳, 侯晨, 等. CuFe2O4/纳米纤维素磁性复合材料的制备及催化性能[J]. 复合材料学报, 2019, 36(1): 213-221.
|
|
ZHANG Sufeng, ZHAO Dongyan, HOU Chen, et al. Synthesis and catalysis properties of magnetic CuFe2O4/cellulose composites[J]. Acta Materiae Compositae Sinica, 2019, 36(1): 213-221.
|
| [21] |
SUN Jian, YU Guangli, LIU Lulu, et al. Core-shell structured Fe3O4@SiO2 supported cobalt(Ⅱ) or copper(Ⅱ) acetylacetonate complexes: Magnetically recoverable nanocatalysts for aerobic epoxidation of styrene[J]. Catalysis Science & Technology, 2014, 4(5): 1246-1252.
|
| [22] |
PHASAYAVAN Witchaya, INCEESUNGVORN Burapat, CHANSAI Sarayute, et al. MoO3 catalysed hydrogenation of nitrobenzene to aniline at near room temperature[J]. Inorganic Chemistry Communications, 2024, 164: 112416.
|
| [23] |
MA Zongyan, CHEN Jing, CHEN Ming, et al. An unconventional direct path for the chemoselective hydrogenation of nitroarenes over a metal-free catalyst[J]. Molecular Catalysis, 2023, 547: 113372.
|
| [24] |
ZHANG Huaxin, FAN Weiwei, XIA Qinghua, et al. Protein-assisted synthesis of zeolite-supported pseudo-single-atom cobalt catalyst for nitrobenzene hydrogenation[J]. Chemical Engineering Journal, 2023, 469: 143870.
|