化工进展 ›› 2025, Vol. 44 ›› Issue (9): 4908-4916.DOI: 10.16085/j.issn.1000-6613.2024-1212

• 化工过程与装备 • 上一篇    

基于迁移学习的微反应器大气液比Aspen模型构建

秦睦轩(), 张玮(), 王盈锦, 李梓良   

  1. 太原理工大学化学与化工学院,化学产品工程山西省重点实验室,山西 太原 030024
  • 收稿日期:2024-07-25 修回日期:2024-08-22 出版日期:2025-09-25 发布日期:2025-09-30
  • 通讯作者: 张玮
  • 作者简介:秦睦轩(2003—),男,博士研究生,研究方向为化工过程建模与优化。E-mail: qinmuxuan01@163.com
  • 基金资助:
    国家自然科学基金(22178241)

Construction of Aspen model for large gas-liquid ratio in microreactors based on transfer learning

QIN Muxuan(), ZHANG Wei(), WANG Yingjin, LI Ziliang   

  1. Shanxi Key Laboratory of Chemical Product Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
  • Received:2024-07-25 Revised:2024-08-22 Online:2025-09-25 Published:2025-09-30
  • Contact: ZHANG Wei

摘要:

微反应器作为过程强化的关键设备,已在多个领域应用。然而,多数流程模拟软件缺乏微反应器模块,在一定程度上阻碍了其在工业中的应用。本文提出了一种基于迁移学习构建的适用于大气液比的Aspen微反应器的产物收率预测模型,以微反应器中气液磺化合成十二烷基苯磺酸过程为例,验证了该模型的准确性。首先,通过大气液比[(2000∶1)~(3000∶1)]磺化实验,在T形微反应器中收集38组十二烷基苯磺酸的收率数据,作为迁移学习的目标域。基于微通道环状流特征采用Aspen Plus的平推流反应器(PFR)模块初步建立该过程的产物收率预测模型,并生成29700组源域数据。考虑流体动力学和微通道结构等特征,本文采用迁移学习中的条件对抗域适应网络(CADAN)并对其进行调整,包括采用深度ReLU网络架构及优化对抗损失函数。随后利用模拟数据训练特征提取器,并利用实验数据进行条件对抗域适应训练。最终建立的模型拟合系数(R2)可达0.9346,相较人工神经网络提升了14.6%,较PFR模型提升了98.18%。同时,该模型在20%的噪声水平下仍保持R2大于0.78,均方根误差低至5.07,优于同等条件下的人工神经网络,显示出较高的预测精度和强鲁棒性。

关键词: 微反应器, 过程建模, Aspen Plus, 迁移学习, 算法

Abstract:

Microreactors, as key devices for process intensification, have been applied in several fields. However, the lack of a microreactor module in most process simulation software has hindered its application in industry to some extent. In this paper, based on transfer learning, a product yield prediction model for Aspen microreactors applicable to large gas-liquid ratio is proposed, and the accuracy of the model is verified by taking the process of synthesizing dodecylbenzene sulfonic acid by large gas-liquid sulfonation in a microreactor as an example. First, 38 sets of yield data of dodecylbenzene sulfonic acid are collected in a T-type microreactor through sulfonation experiments with gas-liquid ratios [(2000∶1)—(3000∶1)], which serve as the target domain for transfer learning. A preliminary product yield prediction model for the process is developed based on the microchannel annular flow characteristics using the flat push-flow reactor (PFR) module of Aspen Plus, and 29700 sets of source domain data are generated. Considering the features such as fluid dynamics and microchannel structure, this study adopts and adapts the conditional adversarial domain adaptation network (CADAN) in transfer learning, including the adoption of a deep ReLU network architecture and optimization of the adversarial loss function. Subsequently, the feature extractor is trained using simulated data and the conditional adversarial domain adaptation is trained using experimental data. The final model fit coefficient (R2) can reach 0.9346, which is improved by 14.6% compared to the artificial neural network and 98.18% compared to the PFR model. Meanwhile, the model maintains an R2 greater than 0.78 at 20% noise level, and the root mean square error is as low as 5.07, which is better than that of the artificial neural network under the same conditions, showing high prediction accuracy and strong robustness.

Key words: microreactor, process modeling, Aspen Plus, transfer learning, algorithm

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn