化工进展 ›› 2025, Vol. 44 ›› Issue (3): 1758-1767.DOI: 10.16085/j.issn.1000-6613.2024-0349
收稿日期:2024-03-04
修回日期:2024-03-31
出版日期:2025-03-25
发布日期:2025-04-15
通讯作者:
赵祯霞
作者简介:张新宇(1998—),男,硕士研究生,研究方向为吸附分离。E-mail:2290652654@qq.com。
基金资助:
ZHANG Xinyu(
), TAO Mengying, YU Xiaoting, ZHAO Zhongxing, ZHAO Zhenxia(
)
Received:2024-03-04
Revised:2024-03-31
Online:2025-03-25
Published:2025-04-15
Contact:
ZHAO Zhenxia
摘要:
为了克服游离漆酶不稳定且难以回收利用的问题,以具有高比表面积且孔径与漆酶尺寸相近的介孔金属有机骨架PCN-333(Al)作为固定漆酶载体,通过物理吸附法制备了PCN-333(Al)固定化漆酶[Lac/PCN-333(Al)],并将其用于活性艳蓝KN-R(RBBR)的降解。结果表明,Lac/PCN-333(Al)具有超高漆酶负载量(688.9mg/g),酶活性回收率达70.9%。同时,PCN-333(Al)的孔道为漆酶提供了良好的保护作用,Lac/PCN-333(Al)的pH、温度、储存稳定性均高于游离漆酶。此外,Lac/PCN-333(Al)的米氏常数(Km)值为97.6μmol/L,远低于游离漆酶,表明固定后漆酶与底物的亲和力增加。最后,在加入0.2mL介体ABTS(0.2mmol/L)条件下Lac/PCN-333(Al) 200min内对RBBR的降解率高达89.0%,降解速率是游离漆酶的4.5倍,且经过5次重复使用后降解率仍可达78.5%,具有良好的可重复使用性。本研究为新型固定化漆酶的研发及其在染料污水处理中的应用提供了参考。
中图分类号:
张新宇, 陶梦滢, 于小婷, 赵钟兴, 赵祯霞. 介孔金属有机骨架固定化漆酶及其活性艳蓝KN-R降解性能[J]. 化工进展, 2025, 44(3): 1758-1767.
ZHANG Xinyu, TAO Mengying, YU Xiaoting, ZHAO Zhongxing, ZHAO Zhenxia. Laccase immobilized on mesoporous metal-organic framework and its performance of reactive brilliant blue KN-R degradation[J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1758-1767.
| 漆酶载体 | 漆酶负载量 /mg·g-1 | 酶活性回收率 /% | 参考文献 |
|---|---|---|---|
| HS NMIL-88(Fe) | 213.2 | 75.8 | [ |
| H-COF-OMe | 567.0 | 85.0 | [ |
| dPCN-224 | 80.0 | 90.0 | [ |
| ILs-NH2-MIL-101 | 61.3 | 83.3 | [ |
| Fe3O4-NH2@MIL-100(Fe) | 61.6 | 72.1 | [ |
| Fe3O4@TA/PEI | 39.9 | 53.1 | [ |
| Fe-Cu-MPC | 189.0 | 63.1 | [ |
| Fe3O4@SiO2-chitosan | 158.1 | 79.1 | [ |
| 3D printed PLA scaffolds | 198.0 | 89.2 | [ |
| PCN-333(Al) | 688.9 | 70.9 | 本工作 |
表1 PCN-333(Al)对漆酶的负载量和酶活性回收率与文献报道其他载体对比
| 漆酶载体 | 漆酶负载量 /mg·g-1 | 酶活性回收率 /% | 参考文献 |
|---|---|---|---|
| HS NMIL-88(Fe) | 213.2 | 75.8 | [ |
| H-COF-OMe | 567.0 | 85.0 | [ |
| dPCN-224 | 80.0 | 90.0 | [ |
| ILs-NH2-MIL-101 | 61.3 | 83.3 | [ |
| Fe3O4-NH2@MIL-100(Fe) | 61.6 | 72.1 | [ |
| Fe3O4@TA/PEI | 39.9 | 53.1 | [ |
| Fe-Cu-MPC | 189.0 | 63.1 | [ |
| Fe3O4@SiO2-chitosan | 158.1 | 79.1 | [ |
| 3D printed PLA scaffolds | 198.0 | 89.2 | [ |
| PCN-333(Al) | 688.9 | 70.9 | 本工作 |
| 样品 | Vmax/μmol·L-1·min-1 | Km/μmol·L-1 | Kcat/min-1 | (Kcat/Km)/L·μmol-1·min-1 |
|---|---|---|---|---|
| 游离漆酶 | 173.0 | 235.3 | 2.9×104 | 123.3 |
| Lac/PCN-333(Al) | 112.2 | 97.6 | 1.9×104 | 194.7 |
表2 游离漆酶和Lac/PCN-333(Al)的动力学参数
| 样品 | Vmax/μmol·L-1·min-1 | Km/μmol·L-1 | Kcat/min-1 | (Kcat/Km)/L·μmol-1·min-1 |
|---|---|---|---|---|
| 游离漆酶 | 173.0 | 235.3 | 2.9×104 | 123.3 |
| Lac/PCN-333(Al) | 112.2 | 97.6 | 1.9×104 | 194.7 |
| 1 | GLAZUNOVA Olga A, MOISEENKO Konstantin V, FEDOROVA Tatyana V. Xenobiotic removal by trametes hirsuta LE-BIN 072 activated carbon-based mycelial pellets: Remazol brilliant blue R case study[J]. Water, 2024, 16(1): 133. |
| 2 | YADAV Ashutosh, YADAV Pooja, SINGH Anil Kumar, et al. Decolourisation of textile dye by laccase: Process evaluation and assessment of its degradation bioproducts[J]. Bioresource Technology, 2021, 340: 125591. |
| 3 | 金令凯, 汪梦妮, 叶梓沫, 等. 黄孢原毛平革菌对RBBR脱色降解及其降解机制[J]. 菌物学报, 2021, 40(1): 240-251. |
| JIN Lingkai, WANG Mengni, YE Zimo, et al. Decolorization and degradation mechanism of reactive brilliant blue KN-R(RBBR) by Phanerochaete chrysosporium [J]. Mycosystema, 2021, 40(1): 240-251. | |
| 4 | ALOUD Saud S, ALHARBI Hattan A, HAMEED Bassim H, et al. Production of activated carbon from date palm stones by hydrothermal carbonization and microwave assisted KOH/NaOH mixture activation for dye adsorption[J]. Scientific Reports, 2023, 13(1): 19064. |
| 5 | 吴鑫明, 安浩, 赵俊宇, 等. Fe/Mn-PAC催化剂的制备及其催化臭氧氧化降解活性艳蓝KN-R性能[J]. 环境工程, 2023, 41(4): 32-39. |
| WU Xinming, AN Hao, ZHAO Junyu, et al. Preparation of Fe/Mn-PAC catalysts and degradation of reactive brilliant blue KN-R by catalytic ozonation[J]. Environmental Engineering, 2023, 41(4): 32-39. | |
| 6 | ERKOC Esra, KILIC Nur Kocberber, Gönül DÖNMEZ. Bioremediation of brilliant blue R and remazol brilliant blue R by thermophile cyanobacterium aponinum[J]. Environmental Engineering and Management Journal, 2022, 21(1): 41-48. |
| 7 | QIN Peng, WU Yuetong, ADIL Bilal, et al. Optimization of laccase from Ganoderma lucidum decolorizing remazol brilliant blue R and Glac1 as main laccase-contributing gene[J]. Molecules, 2019, 24(21): 3914. |
| 8 | XU Huan, BOEUF Guilhem, ZHU Kairuo, et al. Laccase cross-linked ultraporous aluminas for sustainable biodegradation of remazol brilliant blue R[J]. Catalysts, 2022, 12(7): 744. |
| 9 | 侯语桐, 李鑫, 李大伟, 等. 金属有机框架固定化漆酶的制备及其对邻苯二酚的降解[J]. 材料研究学报, 2022, 36(10): 793-800. |
| HOU Yutong, LI Xin, LI Dawei, et al. Preparation of immobilized laccase onto framework-like material of metal-organic compound and its degradation for catechol[J]. Chinese Journal of Materials Research, 2022, 36(10): 793-800. | |
| 10 | GASSER Christoph A, AMMANN Erik M, SHAHGALDIAN Patrick, et al. Laccases to take on the challenge of emerging organic contaminants in wastewater[J]. Applied Microbiology and Biotechnology, 2014, 98(24): 9931-9952. |
| 11 | DOS SANTOS Priscila M, BARUQUE Julia R, DE SOUZA LIRA Regiane K, et al. Corn cob as a green support for laccase immobilization-application on decolorization of remazol brilliant blue R[J]. International Journal of Molecular Sciences, 2022, 23(16): 9363. |
| 12 | FUENTES Keyla M, CORIA-ORIUNDO Lucy L, WIRTH Sonia, et al. Functionalized hierarchical wrinkled-silica spheres for laccases immobilization[J]. Journal of Porous Materials, 2021, 28(1): 261-269. |
| 13 | Dorin DĂSCĂLESCU, APETREI Constantin. Development of a novel electrochemical biosensor based on organized mesoporous carbon and laccase for the detection of serotonin in food supplements[J]. Chemosensors, 2022, 10(9): 365. |
| 14 | IQHRAMMULLAH Muhammad, FAHRINA Afrillia, CHIARI Williams, et al. Laccase immobilization using polymeric supports for wastewater treatment: A critical review[J]. Macromolecular Chemistry and Physics, 2023, 224(9): 2200461. |
| 15 | PENG Jian, WU Enhui, LOU Xiaoxuan, et al. Anthraquinone removal by a metal-organic framework/polyvinyl alcohol cryogel-immobilized laccase: Effect and mechanism exploration[J]. Chemical Engineering Journal, 2021, 418: 129473. |
| 16 | Lynette ALVARADO-RAMÍREZ, Gerson MACHORRO-GARCÍA, Andrea LÓPEZ-LEGARREA, et al. Metal-organic frameworks for enzyme immobilization and nanozymes: A laccase-focused review[J]. Biotechnology Advances, 2024, 70: 108299. |
| 17 | HAN Zhiwei, FAN Xinyang, YU Shuyu, et al. Metal-organic frameworks (MOFs): A novel platform for laccase immobilization and application[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108795. |
| 18 | LI Dawei, CHENG Yue, ZUO Han, et al. Dual-functional biocatalytic membrane containing laccase-embedded metal-organic frameworks for detection and degradation of phenolic pollutant[J]. Journal of Colloid and Interface Science, 2021, 603: 771-782. |
| 19 | LI Runze, LI Xueping, TIAN Duoduo, et al. Amino-functionalized MOF immobilized laccase for enhancing enzyme activity stability and degrading Congo red[J]. Journal of the Taiwan Institute of Chemical Engineers, 2023, 143: 104647. |
| 20 | ZHANG Yibo, HU Peng, MUHAMMAD Yaseen, et al. High-density immobilization of laccase on hollow nano-sphere NH2-MIL88(Fe) host with interfacial defects to improve enzyme activity and stability for remazol brilliant blue R decolorization[J]. Chemical Engineering Journal, 2021, 405: 127003. |
| 21 | FENG Dawei, LIU Tianfu, SU Jie, et al. Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation[J]. Nature Communications, 2015, 6: 5979. |
| 22 | WU Jiacong, HAN Juan, MAO Yanli, et al. Bionic mineralization growth of UIO-66 with bovine serum for facile synthesis of Zr-MOF with adjustable mesopores and its application in enzyme immobilization[J]. Separation and Purification Technology, 2022, 297: 121505. |
| 23 | TANG Ying, LI Wenyuan, MUHAMMAD Yaseen, et al. Fabrication of hollow covalent-organic framework microspheres via emulsion-interfacial strategy to enhance laccase immobilization for tetracycline degradation[J]. Chemical Engineering Journal, 2021, 421: 129743. |
| 24 | ZHAO Mengyuan, LI Yao, MA Xuejuan, et al. Adsorption of cholesterol oxidase and entrapment of horseradish peroxidase in metal-organic frameworks for the colorimetric biosensing of cholesterol[J]. Talanta, 2019, 200: 293-299. |
| 25 | LI Boxi, ZHANG Xufeng, SHEN Jing, et al. Bimetallic PCN-333 with modulated crystallization and a porosity structure for a highly efficient removal of Congo red[J]. ACS Omega, 2024, 9(6): 7173-7187. |
| 26 | YUAN Yuhang, CAI Wenting, XU Jiaxin, et al. Recyclable laccase by coprecipitation with aciduric Cu-based MOFs for bisphenol A degradation in an aqueous environment[J]. Colloids and Surfaces B: Biointerfaces, 2021, 204: 111792. |
| 27 | 周晓彤, 许俊洋, 姜艳军, 等. 铈基介孔金属有机骨架固定化酶的构建及催化性能[J]. 化学通报, 2023, 86(9): 1103-1111. |
| ZHOU Xiaotong, XU Junyang, JIANG Yanjun, et al. Construction and catalytic performance of cerium-based mesoporous MOF immobilized enzymes[J]. Chemistry, 2023, 86(9): 1103-1111. | |
| 28 | SUN Haibing, YUAN Fang, JIA Shengran, et al. Laccase encapsulation immobilized in mesoporous ZIF-8 for enhancement bisphenol A degradation[J]. Journal of Hazardous Materials, 2023, 445: 130460. |
| 29 | LI Xueping, WU Zhansheng, TAO Xiyang, et al. Gentle one-step co-precipitation to synthesize bimetallic CoCu-MOF immobilized laccase for boosting enzyme stability and Congo red removal[J]. Journal of Hazardous Materials, 2022, 438: 129525. |
| 30 | LIU Chang, ZHANG Xiaoyue, ZHOU Yu, et al. A reusable and leakage-proof immobilized laccase@UiO-66-NH2(30) for the efficient biodegradation of rifampicin and lincomycin[J]. Biochemical Engineering Journal, 2023, 194: 108897. |
| 31 | LI Zixuan, YANG Ziyi, SHI Qinghong, et al. Removal of bisphenol A by integrated adsorption and biodegradation using immobilized laccase onto defective PCN-224[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 110166. |
| 32 | ZHANG Wei, LU Zeping, LIU Runtang, et al. Ionic liquid modulation of metal-organic framework immobilized laccase and boosted its catalytic performance for organic pollutants removal[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110880. |
| 33 | WANG Dan, LOU Jiangfei, YUAN Jiugang, et al. Laccase immobilization on core-shell magnetic metal-organic framework microspheres for alkylphenol ethoxylate compound removal[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 105000. |
| 34 | LI Shiqian, QI Benkun, LUO Jianquan, et al. Degradation of phenolic inhibitors by laccase immobilized on tannic acid/polyethylenimine modified magnetic nanoparticles[J]. Results in Engineering, 2022, 15: 100585. |
| 35 | SONG Bixiu, REN Dajun, WANG Zhaobo, et al. Laccase immobilization on bimetallic MOF-derived porous carbon materials for the removal of bisphenol A[J]. Journal of Chemical Technology & Biotechnology, 2023, 98(4): 919-931. |
| 36 | DENG Jibao, WANG Hefei, ZHAN Haisheng, et al. Catalyzed degradation of polycyclic aromatic hydrocarbons by recoverable magnetic chitosan immobilized laccase from Trametes versicolor[J]. Chemosphere, 2022, 301: 134753. |
| 37 | RYBARCZYK Agnieszka, Wojciech SMUŁEK, GRZYWACZYK Adam, et al. 3D printed polylactide scaffolding for laccase immobilization to improve enzyme stability and estrogen removal from wastewater[J]. Bioresource Technology, 2023, 381: 129144. |
| 38 | PANG Shilong, WU Yanwen, ZHANG Xiaoqiong, et al. Immobilization of laccase via adsorption onto bimodal mesoporous Zr-MOF[J]. Process Biochemistry, 2016, 51(2): 229-239. |
| 39 | ZHENG Xiaobing, WANG Qi, JIANG Yanjun, et al. Biomimetic synthesis of magnetic composite particles for laccase immobilization[J]. Industrial & Engineering Chemistry Research, 2012, 51(30): 10140-10146. |
| 40 | JIA Yating, CHEN Yuancai, LUO Jun, et al. Immobilization of laccase onto meso-MIL-53(Al) via physical adsorption for the catalytic conversion of triclosan[J]. Ecotoxicology and Environmental Safety, 2019, 184: 109670. |
| 41 | SILVA Cláudia G, TAVARES Ana P M, Goran DRAŽIĆ, et al. Controlling the surface chemistry of multiwalled carbon nanotubes for the production of highly efficient and stable laccase-based biocatalysts[J]. ChemPlusChem, 2014, 79(8): 1116-1122. |
| 42 | ZHONG Ziwei, PANG Shilong, WU Yanwen, et al. Synthesis and characterization of mesoporous Cu-MOF for laccase immobilization[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(7): 1841-1847. |
| 43 | GIRELLI A M, SCUTO F R. Spent grain as a sustainable and low-cost carrier for laccase immobilization[J]. Waste Management, 2021, 128: 114-121. |
| 44 | SHARMA Kavita, TEWATIA Preeti, KAUR Manpreet, et al. Bioremediation of multifarious pollutants using laccase immobilized on magnetized and carbonyldiimidazole-functionalized cellulose nanofibers[J]. Science of the Total Environment, 2023, 864: 161137. |
| [1] | 张甜甜, 刘霞, 张红飞, 李倩, 周鸿宇, 李冰麟. 微水无溶剂体系酶促制备DHA-磷酯酰丝氨酸[J]. 化工进展, 2025, 44(2): 1033-1041. |
| [2] | 李章良, 杨月珠, 伍传田, 吕源财. 活性炭纤维毡负载N-TiO2/MoS2/N-TiO2固定化漆酶降解双酚A[J]. 化工进展, 2025, 44(2): 887-898. |
| [3] | 张爱京, 王桢钰, 肖宁宁, 宋艳娜, 李军, 冯江涛, 延卫. 新型汞离子吸附材料研究进展[J]. 化工进展, 2025, 44(2): 899-913. |
| [4] | 胡盼盼, 肖梦瑶, 王娜, 史吉平, 刘莉. 多酶协同预处理厨余垃圾技术优化[J]. 化工进展, 2025, 44(2): 1138-1146. |
| [5] | 周渝, 唐甜, 熊子悠, 韦奇. 基于两级微通道分离工艺的甲醇制烯烃废水深度处理[J]. 化工进展, 2025, 44(1): 100-108. |
| [6] | 田晴, 刘青盟, 李方, 杨波, 张思远, 关自良. 细菌的耐盐调控及其在高盐生物脱氮除磷工艺中的应用[J]. 化工进展, 2025, 44(1): 465-476. |
| [7] | 刘新维, 高珊, 王红涛, 王建成. 气化细渣、铝灰的活化及其吸附性能[J]. 化工进展, 2025, 44(1): 558-571. |
| [8] | 周渝, 夏太阳, 韦奇, 唐甜, 田磊. 微通道耦合反渗透膜串联处理甲醇制烯烃废水工艺优化[J]. 化工进展, 2024, 43(S1): 43-51. |
| [9] | 朱昊, 刘汉飞, 高源, 黄益平, 费孝诚, 韩卫清. 盐分对电催化降解性能与机理的影响[J]. 化工进展, 2024, 43(S1): 571-580. |
| [10] | 赵星程, 贾方旭, 刘晨雨, 韩宝红, 梅宁, 姚宏. 实际规模PN/A工艺载体挂膜性能与微生物群落[J]. 化工进展, 2024, 43(9): 5242-5249. |
| [11] | 安芳芳, 曹少磊, 连增帅, 舒大武, 张岩, 李万新, 韩博. 十二烷基甜菜碱对热活化过硫酸钠降解C.I.活性黑5的影响[J]. 化工进展, 2024, 43(9): 5302-5308. |
| [12] | 宋占龙, 汤涛, 潘蔚, 赵希强, 孙静, 毛岩鹏, 王文龙. 微纳米气泡强化臭氧氧化降解含酚废水[J]. 化工进展, 2024, 43(8): 4614-4623. |
| [13] | 于立爽, 李青云, 刘兆明, 张淑茹, 刘幽燕, 唐爱星. 油菜花粉生物炭固定化脂肪酶催化蒎烯环氧化[J]. 化工进展, 2024, 43(7): 3996-4004. |
| [14] | 郑锁祺, 詹凌霄, 陈恒, 李志浩, 王禹瑞, 赵宁, 吴昊, 杨林军. 基于混合模型的脱硫废水旁路蒸发系统能耗特性[J]. 化工进展, 2024, 43(6): 2968-2976. |
| [15] | 刘京都, 余关龙, 龙志奇, 周璐, 包璞瑞, 滕骏毅, 杜春艳. 纳米球状LaAlO3的制备及其在酸性条件下的除氟性能[J]. 化工进展, 2024, 43(6): 3199-3208. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |