化工进展 ›› 2024, Vol. 43 ›› Issue (12): 6669-6679.DOI: 10.16085/j.issn.1000-6613.2023-2196
• 化工过程与装备 • 上一篇
收稿日期:
2023-12-14
修回日期:
2024-03-19
出版日期:
2024-12-15
发布日期:
2025-01-11
通讯作者:
龚斌
作者简介:
张静(1971—),女,教授,研究方向为化工过程强化。E-mail:2501474185@qq.com。
基金资助:
ZHANG Jing(), WANG Yao, JIANG Zhexuan, LIANG Jinning, GONG Bin(
)
Received:
2023-12-14
Revised:
2024-03-19
Online:
2024-12-15
Published:
2025-01-11
Contact:
GONG Bin
摘要:
为了探究自吸射流强化液-液非均相物料快速混合机理,利用SST k-ω湍流模型与Eulerian-Eulerain多相流模型耦合,数值模拟研究了下冲式自吸射流搅拌槽内油水混合特性。对比分析了转速、下冲角和搅拌桨直径对非均相变异系数和离析强度的影响,运用场协同理论深入剖析了下冲式自吸射流搅拌桨强化混合机理。结果表明,非均相变异系数将搅拌过程分为初期振荡、中期下降和后期稳定三个阶段,高转速、20°~30°下冲角、搅拌桨直径居中均有效缩短了搅拌初期和中期的时长,加速了油水混合。对后期稳定流场相含率分析表明,较大的下冲角和搅拌桨直径导致离析强度沿轴向和径向分布不均匀,形成稳定的高油相和高水相区域。对纵剖面上速度与浓度梯度之间的场协同角进行了分析:下冲角和搅拌桨直径较小,射流管速度差较小,搅拌轴附近自吸区域场协同角增大,油相聚集;下冲角和搅拌桨直径较大,下冲射流冲击壁面,射流区域速度迅速下降,近壁面场协同角增大,水相在搅拌轴附近聚集。自吸射流搅拌桨在工程设计中应合理设置下冲角和搅拌桨直径,保障自吸和射流的流动空间。
中图分类号:
张静, 王瑶, 姜哲漩, 梁津宁, 龚斌. 下冲式自吸射流搅拌桨非均相混合特性[J]. 化工进展, 2024, 43(12): 6669-6679.
ZHANG Jing, WANG Yao, JIANG Zhexuan, LIANG Jinning, GONG Bin. Heterogeneous mixing characteristic of down-flush self-priming jet stirring impeller[J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6669-6679.
参数 | 数值 |
---|---|
搅拌槽直径T/mm | 300 |
搅拌槽高度H/mm | 350 |
搅拌桨安装高度C/mm | 212 |
搅拌桨无量纲直径D/T | 0.30、0.36、0.43、0.50、0.56 |
搅拌轴直径w/mm | 15 |
射流管长度L/mm | 77 |
射流管外径do/mm | 8 |
射流管内径di/mm | 6 |
下冲角β/(°) | 10、20、30、40、50、60 |
表1 搅拌槽结构参数
参数 | 数值 |
---|---|
搅拌槽直径T/mm | 300 |
搅拌槽高度H/mm | 350 |
搅拌桨安装高度C/mm | 212 |
搅拌桨无量纲直径D/T | 0.30、0.36、0.43、0.50、0.56 |
搅拌轴直径w/mm | 15 |
射流管长度L/mm | 77 |
射流管外径do/mm | 8 |
射流管内径di/mm | 6 |
下冲角β/(°) | 10、20、30、40、50、60 |
1 | 杨潮, 王博, 张自强, 等. 面向最优固含率的推进式搅拌器固相悬浮性能研究[J]. 高校化学工程学报, 2021, 35(3): 415-422. |
YANG Chao, WANG Bo, ZHANG Ziqiang, et al. Research on suspension performance of propellers for optimum solid concentration applications[J]. Journal of Chemical Engineering of Chinese Universities, 2021, 35(3): 415-422. | |
2 | XU Chaozhong, LIU Xu, DING Chenrong, et al. Power consumption and oxygen transfer optimization for C5 sugar acid production in a gas-liquid stirred tank bioreactor using CFD-Taguchi method[J]. Renewable Energy, 2023, 212: 430-442. |
3 | CLAGNAN Elisa, ADANI Fabrizio. Influence of feedstock source on the development of polyhydroxyalkanoates-producing mixed microbial cultures in continuously stirred tank reactors[J]. New Biotechnology, 2023, 76: 90-97. |
4 | 赵秋月, 张廷安, 刘燕, 等. 高效澄清萃取槽内搅拌对液液分离特性的影响[J]. 高校化学工程学报, 2014, 28(3): 530-534. |
ZHAO Qiuyue, ZHANG Yanan, LIU Yan, et al. Effect of stirring on liquid-liquid separation in modified mixer-settlers[J] Journal of Chemical Engineering of Chinese Universities, 2014, 28(3): 530-534. | |
5 | HOSEINI S S, NAJAFI G, GHOBADIAN B, et al. Impeller shape-optimization of stirred-tank reactor: CFD and fluid structure interaction analyses[J]. Chemical Engineering Journal, 2021, 413: 127497. |
6 | AMEUR Houari. Newly modified curved-bladed impellers for process intensification: Energy saving in the agitation of Hershel-Bulkley fluids[J]. Chemical Engineering and Processing-Process Intensification, 2020, 154: 108009. |
7 | MALUTA Francesco, BUFFO Antonio, MARCHISIO Daniele, et al. Numerical and experimental analysis of the daughter distribution in liquid-liquid stirred tanks[J]. Chemical Engineering & Technology, 2021, 44(11): 1994-2001. |
8 | 陈毕清, 管小平, 杨宁, 等. 搅拌槽中酯化反应热失控的CFD模拟[J]. 过程工程学报, 2022, 22(8): 1053-1060. |
CHEN Biqing, GUAN Xiaoping, YANG Ning, et al. CFD simulation of thermal runaway esterification reaction in stirred tank[J]. The Chinese Journal of Process Engineering, 2022, 22(8): 1053-1060. | |
9 | 刘作华, 王闯, 孙伟, 等. 弹性搅拌桨强化液-液两相混沌混合及液滴分散特性的研究[J]. 化工学报, 2020, 71(10): 4621-4630. |
LIU Zuohua, WANG Chuang, SUN Wei, et al. Chaotic mixing and droplet dispersion characteristics of liquid-liquid with elastic combined impeller[J]. CIESC Journal, 2020, 71(10): 4621-4630. | |
10 | 刘银领, 范兵强, 张喆, 等. 涡轮自吸桨强化气液混合及氧化反应速率[J]. 化工进展, 2021, 40(12): 6620-6628. |
LIU Yinling, FAN Bingqiang, ZHANG Zhe, et al. Gas-liquid mixing and oxidation reaction rate enhanced by self-inducing impeller[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6620-6628. | |
11 | GU Deyin, YE Mei, WANG Xingming, et al. Numerical investigation on mixing characteristics of floating and sinking particles in a stirred tank with fractal impellers[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 116: 51-61. |
12 | 韩吉庆, 胡国星, 林帅, 等. 基于CFD仿真的恒温槽桨叶结构优化研究[J]. 工业加热, 2022, 51(8): 68-72. |
HAN Jiqing, HU Guoxing, LIN Shuai, et al. Structural refinement of the blade of a thermostatic bath based on CFD simulation[J]. Industrial Heating. 2022, 51(8): 68-72. | |
13 | ALNAK Dogan Engin, KOCA Ferhat, ALNAK Yeliz. Numerical investigation of the effect of impeller blade angle for stirred tank[J]. Sakarya University Journal of Science, 2022, 26(2): 397-409. |
14 | 胡玉瑛, 王鑫, 张世豪, 等. 基于CFD的卧式高固厌氧消化混合策略优化[J]. 环境工程学报, 2022, 16(6): 1933-1943. |
HU Yuying, WANG Xin, ZHANG Shihao, et al. Optimizing mixing strategy of horizontal high solid anaerobic digestion based on CFD[J]. Chinese Journal of Environmental Engineering, 2022, 16(6): 1933-1943. | |
15 | 雷鸣, 田凤国, 刘树磊, 等. 桨叶倾角对搅拌釜流动传热性能影响的CFD分析[J].化学工程与装备, 2022, (1): 1-3. |
LEI Ming, TIAN Fengguo, LIU Shulei, et al. CFD analysis of the effect of paddle inclination on the flow heat transfer performance of stirring kettle[J]. Chemical Engineering & Equipment, 2022, (1): 1-3. | |
16 | BUSCIGLIO Antonio, MONTANTE Giuseppina, PAGLIANTI Alessandro. Flow field and homogenization time assessment in continuously-fed stirred tanks[J]. Chemical Engineering Research and Design, 2015, 102: 42-56. |
17 | 韩太柏, 金光远, 邹鹏程, 等. 一种连续流反应器内射流耦合搅拌流的混合特性[J]. 化学工业与工程, 2023, 40(2): 133-142. |
HAN Taibai, JIN Guangyuan, ZOU Pengcheng, et al. Mixing characteristics of continuous flow reactor coupled with jet and mechanical stirring[J]. CHEMICAL INDUSTRY AND ENGINEERING, 2023, 40(2): 133-142. | |
18 | 闫子涵, 许峻, 范怡平, 等. 喷嘴射流在气固提升管内的扩散和混合行为[J]. 过程工程学报, 2020, 20(7): 798-806. |
YAN Zihan, XU Jun, FAN Yiping, et al. Diffusion and mixing behaviors of nozzle jet in the gas-solid riser[J]. The Chinese Journal of Process Engineering, 2020, 20(7): 798-806. | |
19 | 郑志航, 马郡男, 闫子涵, 等. 提升管射流影响区内压力脉动特性研究[J]. 化工学报, 2023, 74(6): 2335-2350. |
ZHENG Zhihang, MA Junnan, YAN Zihan, et al. Study on the pressure pulsation characteristics in jet influence zone of riser[J]. CIESC Journal, 2023, 74(6): 2335-2350. | |
20 | KUMAR Deepak, VAZE Mahesh. Parametric investigation to improve blending performance[M]//Recent Advances in Fluid Dynamics: Select Proceedings of ICAFFTS 2021. Singapore: Springer Nature Singapore, 2022: 389-399. |
21 | 许荣杰, 夏英, 胡修德, 等. 喷嘴结构对粉煤气化过程影响的数值模拟[J]. 石油学报 (石油加工), 2020, 36(2): 367. |
XU Rongjie, XIA Ying, HU Xiude, et al. Numerical simulations of effects of the nozzle structure on pulverized coal gasification process[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(2): 367. | |
22 | GYURIK L, ULBERT Zs, MOLNÁR B, et al. CFD based nozzle design for a multijet mixer[J]. Chemical Engineering and Processing-Process Intensification, 2020, 157: 108121. |
23 | EAKARACH Bumrungthaichaichan, NATTAWAT Jaiklom, APINAN Namkanisorn, et al. On the computational fluid dynamics (CFD) analysis of the effect of jet nozzle angle on mixing time for various liquid heights[J]. Scientific Research and Essays, 2016, 11(4): 42-56. |
24 | WEGNER B, HUAI Y, SADIKI A. Comparative study of turbulent mixing in jet in cross-flow configurations using LES[J]. International Journal of Heat and Fluid Flow, 2004, 25(5): 767-775. |
25 | REYNIERS Pieter A, SARRIS Stamatis A, MARIN Guy B, et al. Computational fluid dynamic design of jet stirred reactors for measuring intrinsic kinetics of gas-phase and gas‐solid reactions[J]. International Journal of Chemical Kinetics, 2016, 48(9): 556-569. |
26 | ZHANG Jing, LI Hongye, YUAN Jiaxin, et al. Hydrodynamic characteristics of a stirred tank with self-priming jet impeller[J]. Chemical Engineering & Technology, 2023, 46(4): 776-784. |
27 | 张静, 袁佳新, 李宏业, 等. 自吸射流搅拌桨液-液非均相混合特性分析[J]. 过程工程学报, 2023, 23(10): 1411-1420. |
ZHANG Jing, YUAN Jiaxin, LI Hongye, et al. Liquid-liquid heterogeneous mixing characteristics of self-priming je impeller self-priming jet impeller[J]. The Chinese Journal of Process Engineering, 2023, 23(10): 1411-1420. | |
28 | 张成松, 张静, 龚斌, 等. 自吸射流柔性搅拌桨振动特性[J]. 化工进展, 2023, 42(4): 1728-1738. |
ZHANG Chengsong, ZHANG Jing, GONG Bin, et al. Vibration characteristics of self-priming jet flexible impeller[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1728-1738. | |
29 | HOSSEINI Seyyed Hossein, SHOJAEE Saeed, AHMADI Goodarz, et al. Computational fluid dynamics studies of dry and wet pressure drops in structured packings[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(4): 1465-1473. |
30 | MAO Xiuli, LIU Ze, LI Ting, et al. A brief review of numerical solving methods for internal fluid of pumped storage unit[J]. International Journal of Energy Research, 2020, 44(10): 7886-7902. |
31 | HADDADI M M, HOSSEINI S H, RASHTCHIAN D, et al. Comparative analysis of different static mixers performance by CFD technique: An innovative mixer[J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 672-684. |
32 | Mushtak AL‐ATABI. Design and assessment of a novel static mixer[J]. The Canadian Journal of Chemical Engineering, 2011, 89(3): 550-554. |
33 | PENG Jian, SUN Wei, HAN Haisheng, et al. Investigation of the role of impeller structural parameters on liquid-liquid mixing characteristics in stirred tanks[J]. ACS Omega, 2022, 7(43): 38700-38708 |
34 | KAZEMZADEH Argang, TURCOTTE Ginette, Farhad EIN-MOZAFFARI, et al. Analysis of the performance of a high-speed scott turbon mixer in immiscible liquid-liquid mixing through endoscopy, tomography, CFD, and statistical methods[J]. Industrial & Engineering Chemistry Research, 2021, 60(41): 14927-14947. |
35 | ZHU Zhaoyou, QIN Bin, LI Shuhua, et al. Multi-dimensional analysis of turbulence models for immiscible liquid-liquid mixing in stirred tank based on numerical simulation[J]. Separation Science and Technology, 2021, 56(2): 411-424. |
36 | DANCKWERTS P V. Continuous flow systems. Distribution of residence times[J]. Chemical Engineering Science, 1995, 50(24): 3857-3866. |
37 | DANCKWERTS P V. The definition and measurement of some characteristics of mixtures[J]. Applied Scientific Research, Section A, 1952, 3(4): 279-296. |
38 | 孟辉波, 刘振江, 禹言芳, 等. 循环射流混合槽内液液两相混合特性数值模拟[J]. 化工进展, 2021, 40(11): 5939-5948. |
MENG Huibo, LIU Zhenjiang, YU Yanfang, et al. Computational simulation of liquid-liquid two-phase mixing characteristics in the circulating jet tank[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 5939-5948. | |
39 | 王宇良. LDPE釜式反应器混合特性研究[D]. 杭州: 浙江大学, 2014. |
WANG Yuliang. Investigation of mixing characteristics in LDPE autoclave reactor[D]. Hangzhou: Zhejiang University, 2014. | |
40 | 过增元. 换热器中的场协同原则及其应用[J]. 机械工程学报, 2003, 39(12): 1-9. |
GUO Zengyuan. Principle of field coordination in heat exchangers and its applications[J]. Chinese Journal oF Mechanical Engineering, 2003, 39(12): 1-9. | |
41 | 陈迁乔, 钟秦. 螺旋管内对流传质场协同强化模拟[J]. 化工学报, 2012, 63(12): 3764-3770. |
CHEN Qianqiao, ZHONG Qin. Simulation on field synergy enhancement for convective mass transfer in helical tube[J]. CIESC Journal, 2012, 63(12): 3764-3770. |
[1] | 马玲岩, 黎义斌, 周欢, 帖星宇, 赵任胜, 周文寒. 弧叶搅拌器不同桨叶直径下混合性能受转速和高度的影响程度分析[J]. 化工进展, 2024, 43(8): 4283-4296. |
[2] | 孙超, 艾诗钦, 刘月婵. 考虑物性变化及壳体传热的新型板壳式换热器板程流动传热数值模拟[J]. 化工进展, 2024, 43(4): 1676-1689. |
[3] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[4] | 张成松, 张静, 龚斌, 李明洋, 袁佳新, 李宏业. 自吸射流柔性搅拌桨振动特性[J]. 化工进展, 2023, 42(4): 1728-1738. |
[5] | 杨锋苓, 梁国林, 张翠勋, 王贵超. 疏水Rushton搅拌桨的减阻性能[J]. 化工进展, 2022, 41(9): 4682-4690. |
[6] | 张静, 马慧玲, 曾得福, 姚潇毅. 水热催化制备绿色柴油工艺中催化剂的失活与再生[J]. 化工进展, 2022, 41(2): 682-689. |
[7] | 李航, 杨鸿辉, 石博方, 延卫. MOFs及其衍生物在非均相Fenton催化中应用的研究进展[J]. 化工进展, 2022, 41(11): 5811-5819. |
[8] | 项军, 张平, 李治水, 聂增来, 唐娜. 丁辛醇缩合废水的处理工艺[J]. 化工进展, 2021, 40(2): 1097-1105. |
[9] | 王斌, 杨月红, 阳耀熙. 钒掺杂铜基、铁基双金属催化剂的非均相芬顿氧化性能[J]. 化工进展, 2021, 40(12): 6705-6713. |
[10] | 李辉, 李干禄, 何峰, 许旭, 田威龙, 许晟, 陈可泉, 欧阳平凯. 微气泡耦合生物反应器的研究进展[J]. 化工进展, 2020, 39(12): 4758-4765. |
[11] | 吴丹,周聪,赵素英. 负载型烯烃氢甲酰化反应催化剂研究进展[J]. 化工进展, 2019, 38(10): 4542-4553. |
[12] | 王成龙, 张金利, 张敏卿. 半弧面斜叶桨的流体力学性能与氧传质特性[J]. 化工进展, 2018, 37(11): 4150-4161. |
[13] | 陆清华, 李沅瑾, 宋凤丹, 陈昊, 齐随涛. MnFe2O4的合成及其非均相Fenton法降解工业废水的性能[J]. 化工进展, 2018, 37(08): 3021-3028. |
[14] | 王炫, 李焕焕, 张乾, 陈俊涛. 蛋白土-Fe2O3非均相Fenton催化剂高效降解罗丹明B染料废水[J]. 化工进展, 2017, 36(08): 3116-3124. |
[15] | 吴丽颖, 王炳煌, 张圆春, 张倩, 王滴, 洪俊明. 凝胶球负载零价铁活化过硫酸盐降解偶氮染料废水[J]. 化工进展, 2017, 36(06): 2318-2324. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 22
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 92
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |