化工进展 ›› 2024, Vol. 43 ›› Issue (12): 6968-6982.DOI: 10.16085/j.issn.1000-6613.2023-2186
• 资源与环境化工 • 上一篇
薛丽丽1(), 吴嘉琪1, 李壮壮1, 李斯文1(
), 王伟1, 赵建社2
收稿日期:
2023-12-12
修回日期:
2024-04-07
出版日期:
2024-12-15
发布日期:
2025-01-11
通讯作者:
李斯文
作者简介:
薛丽丽(2001—),女,硕士研究生,研究方向为氧化脱硫。E-mail:xuelili@chd.edu.cn。
基金资助:
XUE Lili1(), WU Jiaqi1, LI Zhuangzhuang1, LI Siwen1(
), WANG Wei1, ZHAO Jianshe2
Received:
2023-12-12
Revised:
2024-04-07
Online:
2024-12-15
Published:
2025-01-11
Contact:
LI Siwen
摘要:
多金属氧酸盐(POM),简称多酸,是一种具有优异性能的催化剂,但是其通常易溶于有机溶剂,且比表面积较小,导致回收和循环困难。同时,金属有机框架(MOFs)是一种比表面积大、孔隙率高、孔道结构丰富且孔径可调的多孔负载材料。本文从多孔MOFs材料出发,综述了如何促使POM进入MOFs孔隙中,构建得到一类MOFs限域的POM材料(POM@MOF),阐明该类催化材料不仅可以发挥POM高效催化的性能,同时可以有效利用MOFs多孔性能,并对其在氧化脱硫领域的研究现状进行了梳理。然而,即使传统的粉末催化剂具有较优的催化性能,但是不易回收、影响循环使用等问题限制了其在实际生产中的应用。因此,将POM@MOF通过成型纤维固载、静电纺丝等方法进行成型化处理是一条行之有效的方式。最后,本文对成型化POM@MOF在氧化脱硫领域的应用进行了展望,并提出了POM@MOF成型化是未来脱硫领域应用的重要方向之一。
中图分类号:
薛丽丽, 吴嘉琪, 李壮壮, 李斯文, 王伟, 赵建社. MOFs限域多酸团簇的合成及其成型化研究进展[J]. 化工进展, 2024, 43(12): 6968-6982.
XUE Lili, WU Jiaqi, LI Zhuangzhuang, LI Siwen, WANG Wei, ZHAO Jianshe. Research progress in the synthesis and molding of MOFs confined POM[J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6968-6982.
MOFs种类 | 结构 | 代表 | 孔径/Å | BET比表面积/m2·g-1 | 结构图 |
---|---|---|---|---|---|
网状金属-有机骨架材料IRMOF[ | [Zn4O]6+四面体为中心连接芳香羧酸有机配体 | MOF-5 (IRMOF-1) | 15 | 630~2900 | ![]() |
类沸石咪唑酯骨架材料ZIF[ | 过渡金属离子(Zn2+/Co2+)和咪唑类配体的N原子结合形成,具有沸石拓扑结构 | ZIF-8 | 11 | 1500 | ![]() |
莱瓦西尔骨架材料 MIL[ | 过渡金属元素与二元羧酸配体合成或者三、四价金属离子(V、Fe、Cr、Al等)与对苯二甲酸等有机配体合成 | MIL-101(Fe) | 23~27 | 2800 | ![]() |
孔-通道式骨架材料PCN[ | 孔笼-孔道状拓扑结构 | HKUST-1 | 8 | 1000~1458 | ![]() |
UiO[ | 由锆氧簇与羧酸类配体(如对苯二甲酸、均苯三甲酸等)链接形成,具有立体网状结构 | UiO-66 | 8、11 | 1000 | ![]() |
表1 MOFs的分类及其结构(1Å=0.1nm)
MOFs种类 | 结构 | 代表 | 孔径/Å | BET比表面积/m2·g-1 | 结构图 |
---|---|---|---|---|---|
网状金属-有机骨架材料IRMOF[ | [Zn4O]6+四面体为中心连接芳香羧酸有机配体 | MOF-5 (IRMOF-1) | 15 | 630~2900 | ![]() |
类沸石咪唑酯骨架材料ZIF[ | 过渡金属离子(Zn2+/Co2+)和咪唑类配体的N原子结合形成,具有沸石拓扑结构 | ZIF-8 | 11 | 1500 | ![]() |
莱瓦西尔骨架材料 MIL[ | 过渡金属元素与二元羧酸配体合成或者三、四价金属离子(V、Fe、Cr、Al等)与对苯二甲酸等有机配体合成 | MIL-101(Fe) | 23~27 | 2800 | ![]() |
孔-通道式骨架材料PCN[ | 孔笼-孔道状拓扑结构 | HKUST-1 | 8 | 1000~1458 | ![]() |
UiO[ | 由锆氧簇与羧酸类配体(如对苯二甲酸、均苯三甲酸等)链接形成,具有立体网状结构 | UiO-66 | 8、11 | 1000 | ![]() |
1 | 秦磊, 丁钰童, 施彭琳, 等. 燃料油氧化脱硫综述[J]. 广东化工, 2022, 49(20): 71-74. |
QIN Lei, DING Yutong, SHI Penglin, et al. Review on oxidative desulfurization of fuel oil[J]. Guangdong Chemical Industry, 2022, 49(20): 71-74. | |
2 | 张士明, 吴玉国, 刘全杰, 等. 燃油氧化脱硫研究进展[J]. 当代化工, 2023, 52(8): 1996-2000. |
ZHANG Shiming, WU Yuguo, LIU Quanjie, et al. Research progress of oxidative desulfurization for liquid fuels[J]. Contemporary Chemical Industry, 2023, 52(8): 1996-2000. | |
3 | 刘蕾, 崔俊峰, 高敏, 等. 催化加氢-蒸馏技术在加氢脱硫中的应用与对比[J]. 炼油与化工, 2023, 34(1): 1-6. |
LIU Lei, CUI Junfeng, GAO Min, et al. Application and comparison of catalytic hydrogenation-distillation technology in hydrodesulfurization[J]. Refining and Chemical Industry, 2023, 34(1): 1-6. | |
4 | 郑红彬. 关于清洁柴油加氢脱硫技术进展研究[J]. 中国石油和化工标准与质量, 2023, 43(6): 149-151. |
ZHENG Hongbin. Research on the progress of hydrodesulfurization technology for clean diesel oil[J]. China Petroleum and Chemical Standard and Quality, 2023, 43(6): 149-151. | |
5 | 董立霞, 夏步田, 罗凯威, 等. 清洁油品升级背景下加氢脱硫技术研究进展[J]. 化工进展, 2019, 38(1): 208-216. |
DONG Lixia, XIA Butian, LUO Kaiwei, et al. Review of hydrodesulfurization technology based on the upgrading requirement of clean gasoline[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 208-216. | |
6 | 杨雪, 刘可, 张程翔, 等. 2D层状材料的燃料油氧化脱硫研究进展[J]. 化工进展, 2024,43(1): 422-436. |
YANG Xue, LIU Ke, ZHANG Chengxiang, et al. Research progress of 2D layered materials for fuel oil oxidation desulfurization[J]. Chemical Industry and Engineering Progress, 2024,43(1): 422-436. | |
7 | 张霞, 王海波, 勾连科, 等. 柴油氧化脱硫技术研究[J]. 炼油技术与工程, 2019, 49(10): 17-20. |
ZHANG Xia, WANG Haibo, GOU Lianke, et al. Study on diesel oxidative desulfurization technology[J]. Petroleum Refinery Engineering, 2019, 49(10): 17-20. | |
8 | 齐玉欢, 毕维强, 王旭, 等. 离子液体催化氧化脱硫技术进展[J]. 石化技术与应用, 2019, 37(2): 144-148. |
QI Yuhuan, BI Weiqiang, WANG Xu, et al. Progress in catalytic oxidation and desulfurization of ionic liquids technology[J]. Petrochemical Technology & Application, 2019, 37(2): 144-148. | |
9 | MOKHTAR Wan Nur Aini Wan, ABU BAKAR Wan Azelee Wan, Rusmidah ALI, et al. Development of bimetallic and trimetallic oxides doped on molybdenum oxide based material on oxidative desulfurization of diesel[J]. Arabian Journal of Chemistry, 2018, 11(8): 1201-1208. |
10 | 苑丹丹, 宋华林, 由曼玉, 等. 聚合离子液体磷钨酸盐合成及催化模拟油氧化脱硫[J]. 燃料化学学报, 2016, 44(7): 876-881. |
YUAN Dandan, SONG Hualin, YOU Manyu, et al. Synthesis of P/W-coupled polyionic liquids for oxidative desulfurization of model oil[J]. Journal of Fuel Chemistry and Technology, 2016, 44(7): 876-881. | |
11 | MOHUMED Hanan, RAHMAN Shofiur, AHMAD IMTIAZ Syed, et al. Oxidative-extractive desulfurization of model fuels using a pyridinium ionic liquid[J]. ACS Omega, 2020, 5(14): 8023-8031. |
12 | 吕树祥, 刘昊, 王超. 燃油氧化脱硫催化剂的研究进展[J]. 天津科技大学学报, 2022, 37(3): 1-11. |
Shuxiang LYU, LIU Hao, WANG Chao. Research progress of catalysts in oxidative desulfurization of fuel[J]. Journal of Tianjin University of Science & Technology, 2022, 37(3): 1-11. | |
13 | 王好, 孔黎明, 曾勇平. Fe/Zr-SBA-15的制备及其催化氧化脱硫性能[J]. 燃料化学学报, 2023, 51(6): 832-840. |
WANG Hao, KONG Liming, ZENG Yongping. Preparation of Fe/Zr-SBA-15 catalyst and its oxidative desulfurization performance[J]. Journal of Fuel Chemistry and Technology, 2023, 51(6): 832-840. | |
14 | JI Zhe, WANG Haoze, CANOSSA Stefano, et al. Pore chemistry of metal-organic frameworks[J]. Advanced Functional Materials, 2020, 30(41): 2000238. |
15 | ELTAHER B J, SABOUNI R, GHOMMEM M, et al. A comparative study of metal-organic frameworks for mercury detection in competitive aqueous environment[J]. International Journal of Environmental Science and Technology, 2022, 19(12): 12193-12210. |
16 | 李彦彦. 中微双孔金属-有机骨架材料HKUST-1的合成及表征[D]. 广州: 华南理工大学, 2016. |
LI Yanyan. Synthesis and characterization of micro-mesoporous metal-organic framework HKUST-1[D].Guangzhou: South China University of Technology, 2016. | |
17 | KARGAR Hossein, GHAHRAMANINEZHAD Mahboube, SHAHRAK Mahdi Niknam, et al. An effective magnetic catalyst for oxidative desulfurization of model and real fuels: Fe3O4/ZIF-8/TiO₂[J]. Microporous and Mesoporous Materials, 2021, 317: 110992. |
18 | 杨东晓, 熊启钊, 王毅, 等. 多级孔MOF的制备及其吸附分离应用研究[J].化工进展, 2024, 43(4): 1882-1896. |
YANG Dongxiao, XIONG Qizhao, WANG Yi, et al. Progress in the preparation of hierarchically porous MOF and applications in adsorption and separation[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1882-1896. | |
19 | 许春树, 姚庆达, 梁永贤, 等. 金属-有机框架材料的调控策略及其对典型重金属离子的吸附性能[J]. 化工进展, 2023, 42(12): 6518-6534. |
XU Chunshu, YAO Qingda, LIANG Yongxian, et al. Modulation strategies of metal-organic framework materials and its adsorption performance on typical heavy metal ions[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6518-6534. | |
20 | ASSFOUR Bassem, LEONI Stefano, SEIFERT Gotthard. Hydrogen adsorption sites in zeolite imidazolate frameworks ZIF-8 and ZIF-11[J]. The Journal of Physical Chemistry C, 2010, 114(31): 13381-13384. |
21 | PARK Kyo Sung, NI Zheng, CÔTÉ Adrien P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186-10191. |
22 | DUAN Chongxiong, YU Yi, HU Han. Recent progress on synthesis of ZIF-67-based materials and their application to heterogeneous catalysis[J]. Green Energy and Environment, 2022, 7(1): 3-15. |
23 | LIU Dongning, WANG Cuijuan, XIAO Yumei, et al. Synthesis of ZIF-8-based multifunctional shell and sustained release of drugs[J]. Inorganic Chemistry Communications, 2020, 114: 107773. |
24 | 李文翔. 金属有机骨架材料UiO-66疏水改性及潮湿环境下吸附VOCs的性能研究[D]. 济南: 山东大学, 2022. |
LI Wenxiang. Hydrophobic modification of metal-organic framework UiO-66 and its adsorption performance of VOCs in humid environment[D]. Jinan: Shandong University, 2022. | |
25 | 钱向瑶. 金属有机骨架UiO-66-NH2制备及对月桂酸和十水硫酸钠传热储热性能影响[D]. 北京: 北京建筑大学, 2022. |
QIAN Xiangyao. Preparation of metal organic framework UiO-66-NH2 and its effect on heat transfer and thermal storage properties of lauric acid and sodium sulfate decahydrate[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2022. | |
26 | 夏雯珂. MOF-5@GO复合材料的功能化修饰及其CO2吸附性能研究[D]. 兰州: 兰州理工大学, 2022. |
XIA Wenke. Study on functionalized modification and CO2 adsorption property of MOF-5@GO composites[D]. Lanzhou: Lanzhou University of Technology, 2022. | |
27 | 郑涛. MOF-5/PVDF复合膜的制备及其在染料和重金属废水吸附中的应用[D]. 杭州: 浙江理工大学, 2022. |
ZHENG Tao. Preparation of MOF-5/PVDF composite membrane and its application in adsorption of industrial wastewater[D]. Hangzhou: Zhejiang Sci-Tech University, 2022. | |
28 | EDDAOUDI Mohamed, KIM Jaheon, ROSI Nathaniel, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295(5554): 469-472. |
29 | 胡传正. ZIF系列金属有机框架材料的合成及其电化学性能研究[D]. 武汉: 江汉大学, 2021. |
HU Chuanzheng. Synthesis of zeolitic imidazolate framework series materials and study of their electrochemical properties[D]. Wuhan: Jianghan University, 2021. | |
30 | FÉREY G, SERRE C, MELLOT-DRAZNIEKS C, et al. A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction[J]. Angwandte Chemie International Edition, 2004, 43(46): 6296-6301. |
31 | HUPP Joseph T, POEPPELMEIER Kenneth R. Better living through nanopore chemistry[J]. Science, 2005, 309(5743): 2008-2009. |
32 | 张春梅. MIL-101系列材料的合成及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. |
ZHANG Chunmei. Synthesis and performance study of MIL-101 Materials[D]. Harbin: Harbin Institute of Technology, 2014. | |
33 | ZHENG Yue, CHU Fuchen, ZHANG Bing, et al. Ultrahigh adsorption capacities of carbon tetrachloride on MIL-101 and MIL-101/graphene oxide composites[J]. Microporous and Mesoporous Materials, 2018, 263: 71-76. |
34 | 杨洋. 金属有机骨架材料HKUST-1的制备及吸附脱硫性能研究[D]. 开封: 河南大学, 2019. |
YANG Yang. Preparation of metal organic framework meterial HKUST-1 and its adsorption desulfurization performance[D]. Kaifeng: Henan University, 2019. | |
35 | 董寒, 张晓东, 李红欣, 等. 金属有机骨架材料HKUST-1的制备及其应用进展[J]. 材料导报, 2016, 30(23): 114-119, 139. |
DONG Han, ZHANG Xiaodong, LI Hongxin, et al. Progress in preparation of metal organic frameworks HKUST-1 and its application[J]. Materials Review, 2016, 30(23): 114-119, 139. | |
36 | 赵莹鑫, 胡豪, 陈飘, 等. H3PMo12O40/UiO-66的制备及其吸附性能研究[J]. 湖北大学学报(自然科学版), 2023, 45(4): 558-566. |
ZHAO Yingxin, HU Hao, CHEN Piao, et al. H3PMo12O40/UiO-66 preparation and adsorption performance[J]. Journal of Hubei University (Natural Science), 2023, 45(4): 558-566. | |
37 | 龚建康, 熊汝琴, 李声剑, 等. UiO-66/MoS2材料对Cr(Ⅵ)-亚甲基蓝的高效光催化协同处理研究[J]. 环境科学与技术, 2023, 46(10): 70-77. |
GONG Jiankang, XIONG Ruqin, LI Shengjian, et al. Synergetic treatment of Cr(Ⅵ)-methylene blue on UiO-66/MoS2 photocatalysts[J]. Environment Science and Technology, 2023, 46(10): 70-77. | |
38 | 吕莹. 基于Wells-Dawson型多阴离子的金属-氧簇合物的合成、结构及性质[D]. 长春: 吉林大学, 2018. |
Ying LYU. Synthesis, structure and property of Wells-Dawson type metal-oxygen clusters[D]. Changchun: Jilin University, 2018. | |
39 | DING Yongcong, WANG Jian, LIAO Mingyu, et al. Deep oxidative desulfurization of dibenzothiophene by novel POM-based IL immobilized on well-ordered KIT-6[J]. Chemical Engineering Journal, 2021, 418: 129470. |
40 | HORN Michael R, SINGH Amandeep, ALOMARI Suaad, et al. Polyoxometalates (POMs): From electroactive clusters to energy materials[J]. Energy & Environmental Science, 2021, 14(4): 1652-1700. |
41 | ABAZARI Reza, ESRAFILI Leili, MORSALI Ali, et al. PMo12@UiO-67 nanocomposite as a novel non-leaching catalyst with enhanced performance durability for sulfur removal from liquid fuels with exceptionally diluted oxidant[J]. Applied Catalysis B: Environmental, 2021, 283: 119582. |
42 | GOBBO Pierangelo, TIAN Liangfei, B V V S Pavan KUMAR, et al. Catalytic processing in ruthenium-based polyoxometalate coacervate protocells[J]. Nature Communications, 2020, 11(1): 41. |
43 | WANG Rui, ZHANG Xveyang, REN Zhaoyong. Germanium-based polyoxometalates for the adsorption-decomposition of NO x [J]. Journal of Hazardous Materials, 2021, 402: 123494. |
44 | 崔莉萍. Dawson型砷钼多金属氧酸盐的抗癌活性及机理研究[D]. 哈尔滨: 哈尔滨师范大学, 2022. |
CUI Liping. Study on anticancer activity and mechanism of Dawson type arsenic-molybdenum polyoxometalates[D]. Harbin: Harbin Normal University, 2022. | |
45 | CHI Guoxiang, SHUAI Die, LI Jiaxin, et al. Mechanism of melanogenesis inhibition by Keggin-type polyoxometalates[J]. Nanoscale, 2023, 15(35): 14543-14550. |
46 | ISHIKAWA Satoshi, IKEDA Takuji, KOUTANI Maki, et al. Oxidation catalysis over solid-state Keggin-type phosphomolybdic acid with oxygen defects[J]. Journal of the American Chemical Society, 2022, 144(17): 7693-7708. |
47 | KAZEMI Farshid, ZAMANI Hassan ALI, ABEDI Mohammad Reza, et al. Synthesis and comparison of three photocatalysts for degrading tramadol as an analgesic and widely used drug in water samples[J]. Environmental Research, 2023, 225: 114821. |
48 | 冯彩婷. 基于Keggin型磷钨酸的高效稳定复合材料的制备及酸催化和光催化性能研究[D]. 西安: 西北大学, 2022. |
FENG Caiting. Preparation and acid and photocatalytic performance of high-efficiency and stable composites based on Keggin-type phosphotungstates[D]. Xi’an: Northwest University, 2022. | |
49 | 鄢景森, 王泽青, 鄂永胜, 等. 磷钨钒杂多酸相转移催化剂的制备及其深度氧化脱硫性能[J]. 燃料化学学报, 2019, 47(11): 1337-1345. |
YAN Jingsen, WANG Zeqing, Yongsheng E, et al. Synthesis and deep oxidative desulfurization of vanadium-substituted polyoxotungstate phase transfer catalyst[J]. Journal of Fuel Chemistry and Technology, 2019, 47(11): 1337-1345. | |
50 | LIU Huifang, LI Zhen, DONG Jing, et al. Polyoxometalates encapsulated into hollow double-shelled nanospheres as amphiphilic nanoreactors for an effective oxidative desulfurization[J]. Nanoscale, 2020, 12(31): 16586-16595. |
51 | 武攀峰. 基于Keggin型多酸的易回收高活性磁性复合材料的制备及催化性能研究[D]. 西安: 西北大学, 2019. |
WU Panfeng. Preparation and catalytic performance of recoverable and high-activity magnetic composite materials based on Keggin-type POMs[D]. Xi’an: Northwest University, 2019. | |
52 | 刘昊然, 李秀萍, 赵荣祥, 等. H2WO4/GO的制备及其超声-氧化脱除模拟油中的硫化物[J]. 燃料化学学报, 2019, 47(7): 843-851. |
LIU Haoran, LI Xiuping, ZHAO Rongxiang, et al. Preparation of H2WO4/GO and its ultrasonic-oxidative desulfurization in model oil[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 843-851. | |
53 | 王彦娟, 梁飞雪, 白金, 等. SiO2负载磷钨钒杂多酸杂化材料的制备及其氧化脱硫性能的研究[J]. 燃料化学学报, 2016, 44(9): 1099-1104. |
WANG Yanjuan, LIANG Feixue, BAI Jin, et al. Study on the oxidative desulfurization performance of SiO2-supported divanadium-substituted phosphotungstate hybrid material[J]. Journal of Fuel Chemistry and Technology, 2016, 44(9): 1099-1104. | |
54 | 李旭贺, 方磊, 杨浩, 等. 石墨相氮化碳负载磷钨酸杂化材料的制备及其氧化脱硫催化性能[J]. 燃料化学学报, 2019, 47(2): 174-182. |
LI Xuhe, FANG Lei, YANG Hao, et al. Preparation of g-C3N4 supported phosphotungstate hybrid materials and their catalytic performance in the oxidative desulfurization[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 174-182. | |
55 | 韩娜, 陈政利, 苏炜, 等. BiVO4/SBA-15催化剂的制备及其光催化氧化脱硫性能[J]. 燃料化学学报, 2019, 47(2): 191-198. |
HAN Na, CHEN Zhengli, SU Wei, et al. Preparation of BiVO4/SBA-15 catalyst and its performance in the photocatalytic oxidation desulfurization[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 191-198. | |
56 | 李剑, 王雪莹, 黄鑫, 等. CuWO4/SBA-15催化剂的制备及其光催化氧化脱硫性能[J]. 燃料化学学报, 2020, 48(5): 632-640. |
LI Jian, WANG Xueying, HUANG Xin, et al. Preparation of the CuWO4/SBA-15 catalyst and its performance in the photocatalytic oxidation desulfurization[J]. Journal of Fuel Chemistry and Technology, 2020, 48(5): 632-640. | |
57 | SUN Jiamin, ABEDNATANZI Sara, VAN DER VOORT Pascal, et al. POM@MOF hybrids: Synthesis and applications[J]. Catalysts, 2020, 10(5): 578. |
58 | VEDACHALAM Sundaramurthy, BOAHENE Philip, DALAI Ajay K. Oxidative desulfurization of heavy gas oil over a Ti-TUD-1-supported Keggin-type molybdenum heteropolyacid[J]. Energy & Fuels, 2020, 34(12): 15299-15312. |
59 | 张东旭, 宋华, 苑丹丹. 合成条件对磷钨酸负载的金属有机框架催化剂氧化脱硫性能的影响[J]. 燃料化学学报, 2019, 47(2): 183-190. |
ZHANG Dongxu, SONG Hua, YUAN Dandan. Effect of synthesis conditions on the catalytic performance of phosphotungstic acid encapsulated metal-organic framework in the oxidative desulfurization[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 183-190. | |
60 | MARU Ketan, KALLA Sarita, JANGIR Ritambhara. MOF/POM hybrids as catalysts for organic transformations[J]. Dalton Transactions, 2022, 51(32): 11952-11986. |
61 | LIU Yang, TANG Chensi, CHENG Min, et al. Polyoxometalate@metal-organic framework composites as effective photocatalysts[J]. ACS Catalysis, 2021, 11(21): 13374-13396. |
62 | ZHANG Hao, SUN Ru, LI Dacheng, et al. A review on crystalline porous MOFs materials in photocatalytic transformations of organic compounds in recent three years[J]. Chinese Journal of Structural Chemistry, 2022, 41: 2211071-2211083. |
63 | LEONTIADOU Marina A, Ali AL-OTAIFY, KERSHAW Stephen V, et al. Ultrafast exciton dynamics in Cd x Hg(1- x)Te alloy quantum dots[J]. Chemical Physics, 2016, 469/470: 25-30. |
64 | ZHANG Xiaomin, ZHANG Zihe, ZHANG Bohai, et al. Synergistic effect of Zr-MOF on phosphomolybdic acid promotes efficient oxidative desulfurization[J]. Applied Catalysis B: Environmental, 2019, 256: 117804. |
65 | WANG Cheng, LI Airong, MA Yuling. Phosphomolybdic acid niched in the metal-organic framework UiO-66 with defects: An efficient and stable catalyst for oxidative desulfurization[J]. Fuel Processing Technology, 2021, 212: 106629. |
66 | MA Yuling, LI Airong, WANG Cheng, et al. Preparation of HPW@UiO-66 catalyst with defects and its application in oxidative desulfurization[J]. Chemical Engineering Journal, 2021, 404: 127062. |
67 | MA Tianlin, DING Jianfei, SHAO Rong, et al. Dehydration of glycerol to acrolein over Wells-Dawson and Keggin type phosphotungstic acids supported on MCM-41 catalysts[J]. Chemical Engineering Journal, 2017, 316: 797-806. |
68 | Qiang LYU, LIU Hong, XU Weichao, et al. Selective conversion of glucose to levulinic acid catalyzed by HPAs/MOF-5 in a hydrophilic eutectic solvent system[J]. Energy & Fuels, 2022, 36(24): 14994-15003. |
69 | XU Hongjian, WU Lu, ZHAO Xinyu, et al. Hierarchically porous amino-functionalized nanoMOF network anchored phosphomolybdic acid for oxidative desulfurization and shaping application[J]. Journal of Colloid and Interface Science, 2024, 658: 313-323. |
70 | ZHONG Xiahua, LU Ying, LUO Fang, et al. A nanocrystalline POM@MOFs catalyst for the degradation of phenol: Effective cooperative catalysis by metal nodes and POM guests[J]. Chemistry, 2018, 24(12): 3045-3051. |
71 | LI Gaopeng, ZHANG Kun, LI Chengbo, et al. Solvent-free method to encapsulate polyoxometalate into metal-organic frameworks as efficient and recyclable photocatalyst for harmful sulfamethazine degrading in water[J]. Applied Catalysis B: Environmental, 2019, 245: 753-759. |
72 | LIU Xiaomin, XIE Linhua, WU Yufeng. Recent advances in the shaping of metal-organic frameworks[J]. Inorganic Chemistry Frontiers, 2020, 7(15): 2840-2866. |
73 | 李立博, 费小龙, 刘小华. 应用于气体分离的金属有机骨架成型研究进展[J]. 河南师范大学学报(自然科学版), 2023, 51(5): 37-45, 181. |
LI Libo, FEI Xiaolong, LIU Xiaohua. Review on the shaping of metal-organic frameworks for gas separation[J]. Journal of Henan Normal University (Natural Science Edition), 2023, 51(5): 37-45, 181. | |
74 | 张玲禹. 纤维素基/过渡金属催化剂的构建及催化性能研究[D]. 贵阳: 贵州师范大学, 2023. |
ZHANG Lingyu. Construction and catalytic performance of cellulose-based/transition metal catalysts[D].Guiyang: Guizhou Normal University, 2023. | |
75 | 董亚浩. 功能化纤维素负载催化剂的合成及其在Suzuki反应中的应用[D]. 天津: 天津大学, 2017. |
DONG Yahao. Functionalized cellulose-supported catalysts and their applications in suzuki reactions[D].Tianjin: Tianjin University, 2017. | |
76 | 侯欣宇. 金属-有机骨架在纤维素纤维上的高效生长及光催化性能[D]. 哈尔滨: 东北林业大学, 2022. |
HOU Xinyu. Highly efficient growth of metal-organic frameworks on cellulose fibers and photocatalytic properties of their composites[D]. Harbin: Northeast Forestry University, 2022. | |
77 | HUANG Jianlin, GRAY Derek G, LI Chaojun. A(3)-Coupling catalyzed by robust Au nanoparticles covalently bonded to HS-functionalized cellulose nanocrystalline films[J]. Beilstein Journal of Organic Chemistry, 2013, 9: 1388-1396. |
78 | IBNU ABDULWAHAB M, KHAMKEAW A, JONGSOMJIT B, et al. Bacterial cellulose supported alumina catalyst for ethanol dehydration[J]. Catalysis Letters, 2017, 147(9): 2462-2472. |
79 | JAGADALE Megha, SALUNKHE Rajashri, KUMBHAR Arjun, et al. Cellulose-supported N-heterocyclic carbene silver complex with pendant ferrocenyl group for diaryl ether synthesis[J]. Applied Organometallic Chemistry, 2017, 31(3): e3576. |
80 | YUAN Fanshu, HUANG Yang, FAN Mengmeng, et al. N-doped carbon nanofibrous network derived from bacterial cellulose for the loading of Pt nanoparticles for methanol oxidation reaction[J]. Chemistry, 2018, 24(8): 1844-1852. |
81 | 孙鹏. 纤维素负载钯催化炔烃官能化反应的研究[D]. 哈尔滨: 东北林业大学, 2020. |
SUN Peng. Studies on cellulose-supported palladium catalyzed alkyne functionalization[D]. Harbin: Northeast Forestry University, 2020. | |
82 | ABDELHAMID Hani Nasser, MATHEW Aji P. Cellulose-metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted Applications: A review[J]. Coordination Chemistry Reviews, 2022, 451: 214263. |
83 | 侯庆喜, 王凯晴, 霍丹, 等. 金属有机骨架@纳米纤维素复合材料的制备及应用研究进展[J]. 天津科技大学学报, 2022, 37(6): 69-80. |
HOU Qingxi, WANG Kaiqing, HUO Dan, et al. Research progress in preparation and application of metal-organic framework@nanocellulose composite materials[J]. Journal of Tianjin University of Science & Technology, 2022, 37(6): 69-80. | |
84 | DUAN Chao, MENG Jingru, WANG Xinqi, et al. Synthesis of novel cellulose-based antibacterial composites of Ag nanoparticles@metal-organic frameworks@carboxymethylated fibers[J]. Carbohydrate Polymers, 2018, 193: 82-88. |
85 | LU Wanli, DUAN Chao, LIU Chaoran, et al. A self-cleaning and photocatalytic cellulose-fiber-supported “Ag@AgCl@MOF-cloth” membrane for complex wastewater remediation[J]. Carbohydrate Polymers, 2020, 247: 116691. |
86 | HUANG Guohuan, XU Danxia, QIN Zhimei, et al. Universal, controllable, large-scale and facile fabrication of nano-MOFs tightly-bonded on flexible substrate[J]. Chemical Engineering Journal, 2020, 395: 125181. |
87 | LI Jiarong, YANG Zhi, HU Guangfa, et al. Heteropolyacid supported MOF fibers for oxidative desulfurization of fuel[J]. Chemical Engineering Journal, 2020, 388: 124325. |
88 | 邓伶俐. 基于静电纺丝技术的明胶复合纳米纤维的构建及其应用研究[D]. 杭州: 浙江大学, 2019. |
DENG Lingli. Fabrication of electrospun gelatin composite nanofibers and its relevant application[D]. Hangzhou: Zhejiang University, 2019. | |
89 | 杨宇帆. 静电纺丝技术制备肉桂醛活性纳米纤维膜及在冷却肉保鲜中的应用[D]. 哈尔滨: 东北农业大学, 2021. |
YANG Yufan. Fabrication of cinnamaldehyde active nanofiber film by electrospinning and its application in chilled meat preservation[D]. Harbin: Northeast Agricultural University, 2021. | |
90 | 刘洪岐. MOF/纳米纤维复合锌离子电池隔膜的可控制备及性能研究[D]. 无锡: 江南大学, 2022. |
LIU Hongqi. Controllable preparation and properties of MOF/nanofiber composite separator in zinc-ion battery[D].Wuxi: Jiangnan University, 2022. | |
91 | 李婷婷. 基于静电纺丝技术的MOF纳米纤维膜的设计制备及应用[D]. 沈阳: 辽宁大学, 2019. |
LI Tingting. Design, fabrication and application of metal-organic framework nanofibrous membranes based on electrospinning[D].Shenyang: Liaoning University, 2019. | |
92 | 陈聪聪. “一锅法” 制备金属有机框架/聚合物复合材料及其应用研究[D]. 杭州: 浙江大学, 2021. |
CHEN Congcong. Fabrication of metal-organic framework/polymer composites via one-pot strategy and their applications[D].Hangzhou: Zhejiang University, 2021. | |
93 | 曹香慧. 紫外光引发聚合对MOF纳米粒子的聚合物接枝及用于制备MOF/聚合物静电纺丝纳米纤维[D]. 天津: 天津大学, 2020. |
CAO Xianghui. Polymer-grafting of MOF nanoparticles by UV-induced photopolymerization and preparation of MOF/polymer nanofibers by electrospinning[D]. Tianjin: Tianjin University, 2020. | |
94 | PENG Rongfu, ZHANG Shuai, YAO Yiyuan, et al. MOFs meet electrospinning: New opportunities for water treatment[J]. Chemical Engineering Journal, 2023, 453: 139669. |
95 | 贾姣, 郑作保, 吴昊, 等. 静电纺聚合物复合金属有机框架功能纳米纤维膜的研究进展[J]. 纺织学报, 2023, 44(6): 215-224. |
JIA Jiao, ZHENG Zuobao, WU Hao, et al. Research progress in electrospinning functional nanofibers with metal-organic framework[J]. Journal of Textile Research, 2023, 44(6): 215-224. | |
96 | ROSE Marcus, Bertram BÖHRINGER, JOLLY Marc, et al. MOF processing by electrospinning for functional textiles[J]. Advanced Engineering Materials, 2011, 13(4): 356-360. |
97 | WANG Qianyou, HAN Jimin, ZHANG Yuanyuan, et al. Fabrication of copper azide film through metal-organic framework for micro-initiator applications[J]. ACS Applied Materials & Interfaces, 2019, 11(8): 8081-8088. |
98 | ZHANG Yuge, ZHANG Yufei, WANG Xianfeng, et al. Ultrahigh metal-organic framework loading and flexible nanofibrous membranes for efficient CO2 capture with long-term, ultrastable recyclability[J]. ACS Applied Materials & Interfaces, 2018, 10(40): 34802-34810. |
99 | Dolores MORALES M, Antonia INFANTES-MOLINA, LÁZARO-MARTÍNEZ JM, et al. Heterogeneous acid catalysts prepared by immobilization of H3PW12O40 on silica through impregnation and inclusion, applied to the synthesis of 3H-1,5-benzodiazepines[J]. Molecular Catalysis, 2020, 485: 110842. |
100 | YUE Du, LEI Jiaheng, ZHOU Lina, et al. Oxidative desulfurization of fuels at room temperature using ordered meso/macroporous H3PW12O40/SiO2 catalyst with high specific surface areas[J]. Arabian Journal of Chemistry, 2020, 13(1): 2649-2658. |
101 | SONG Ruixin, KANG Shifei, YAO Liangtao, et al. Construction of an La-BiVO4/O-doped g-C3N4 heterojunction photocatalyst embedded in electrospinning nanofibers[J]. Langmuir, 2023, 39(19): 6647-6656. |
102 | LIANG Jing, YU Lei, ZHANG Jiangyong, et al. Assembly of heteropoly acid into localized porous structures for in situ preparation of silver and polypyrrole nanoparticles[J]. RSC Advances, 2018, 8(64): 36558-36562. |
103 | 李颖. 多金属氧酸盐的设计合成及其在催化氧化5-羟甲基糠醛反应中性能研究[D]. 长春: 东北师范大学, 2021. |
LI Ying. The preparation of polyoxometalate catalysts in catalytic oxidation of 5-HMF[D].Changchun: Northeast Normal University, 2021. | |
104 | 李旭. 静电纺丝技术制备TiO2-HPW半导体复合纳米材料及光催化降解Cr(Ⅵ)的研究[D]. 广州: 暨南大学, 2015. |
LI Xu. Photocatalytic reduction of Cr(Ⅵ) by TiO2-HPW semiconductor compound nanofibers prepared via electrospinning technology[D].Guangzhou: Jinan University, 2015. | |
105 | 李婷婷, 张志明, 刘策, 等. 磷钼酸/聚甲基丙烯酸甲酯复合纤维膜的制备及光催化性能[J]. 高分子材料科学与工程, 2014, 30(8): 140-143. |
LI Tingting, ZHANG Zhiming, LIU Ce, et al. Preparation and photocatalysis property of phosphomolybdic acid/polymethyl methacrylate composite nanofiber membrane[J]. Polymer Materials Science & Engineering, 2014, 30(8): 140-143. | |
106 | LEE Chanmin, NA Heesoo, JEON Yukwon, et al. Poly(ether imide) nanofibrous web composite membrane with SiO2/heteropolyacid ionomer for durable and high-temperature polymer electrolyte membrane (PEM) fuel cells[J]. Journal of Industrial and Engineering Chemistry, 2019, 74: 7-13. |
107 | WANG Ni, WEI Yan, CHANG Miao, et al. Macro-meso-microporous metal-organic frameworks: Template-assisted spray drying synthesis and enhanced catalysis[J]. ACS Applied Materials & Interfaces, 2022, 14(8): 10712-10720. |
108 | Ceren AVCI-CAMUR, TROYANO Javier, Javier PÉREZ-CARVAJAL, et al. Aqueous production of spherical Zr-MOF beads via continuous-flow spray-drying[J]. Green Chemistry, 2018, 20(4): 873-878. |
109 | VALEKAR Anil H, CHO Kyung-Ho, LEE U-Hwang, et al. Shaping of porous metal-organic framework granules using mesoporous ρ-alumina as a binder[J]. RSC Advances, 2017, 7(88): 55767-55777. |
110 | KHABZINA Yoldes, DHAINAUT Jeremy, AHLHELM Matthias, et al. Synthesis and shaping scale-up study of functionalized UiO-66 MOF for ammonia air purification filters[J]. Industrial & Engineering Chemistry Research, 2018, 57(24): 8200-8208. |
111 | ZHENG Jieyi, CUI Xili, YANG Qiwei, et al. Shaping of ultrahigh-loading MOF pellet with a strongly anti-tearing binder for gas separation and storage[J]. Chemical Engineering Journal, 2018, 354: 1075-1082. |
112 | ABDURRASHID Haruna, ALJUNID Merican Zulkifli Merican, GANI Musa Suleiman, et al. MOF-808(Zr)-supported with Keggin polyoxometalates as an efficient oxidative desulfurization catalyst[J]. Journal of the Taiwan Institute of Chemical Engineers, 2023, 147: 104919. |
[1] | 李新月, 李振京, 韩沂杭, 郭永强, 闫瑜, 哈力米热·卡热木拉提, 赵会吉, 柴永明, 刘东, 殷长龙. 油脂加氢脱氧生产绿色柴油催化剂的研究进展[J]. 化工进展, 2024, 43(S1): 351-364. |
[2] | 邹鹏翔, 张明阳, 朱文杰, 郭耀骏, 程婕, 赵妍舒, 袁迎春. 基于CFD的脂肪酸甲酯环氧化用液-液撞击流旋流反应器入口结构优化[J]. 化工进展, 2024, 43(S1): 166-173. |
[3] | 王月, 张学瑞, 宋玺文, 陈渤燕, 李庆勋, 钟海军, 胡孝伟, 何帅. 电解制氢合成氨技术综述与展望[J]. 化工进展, 2024, 43(S1): 180-188. |
[4] | 林梅洁, 米烁东, 包成. 金属-掺杂氧化铈体系H2/CO电化学反应机理研究进展[J]. 化工进展, 2024, 43(S1): 209-224. |
[5] | 李帅哲, 聂懿宸, PHIDSAVARD Keomeesay, 顾雯, 张伟, 刘娜, 徐高翔, 刘莹, 李兴勇, 陈玉保. 非贵金属催化生物质加氢脱氧制备烃基生物燃料的研究进展[J]. 化工进展, 2024, 43(S1): 225-242. |
[6] | 熊磊, 丁飞燕, 李聪, 王群乐, 吕起, 翟晓娜, 刘峰. 金属Pt负载型非均相催化剂研究进展[J]. 化工进展, 2024, 43(S1): 295-304. |
[7] | 宋财城, 陈晓贞, 刘丽, 杨成敏, 郑步梅, 尹晓莹, 孙进, 姚运海, 段为宇. 碳基载体负载加氢脱硫催化剂的研究进展[J]. 化工进展, 2024, 43(S1): 305-314. |
[8] | 韩洪晶, 车宇, 田宇轩, 王海英, 张亚男, 陈彦广. 木质素催化氢解催化剂及溶剂的研究进展[J]. 化工进展, 2024, 43(S1): 315-324. |
[9] | 胡兴, 刘易, 杜泽学. 3-氯丙烯直接合成环氧氯丙烷催化剂研究进展[J]. 化工进展, 2024, 43(S1): 325-334. |
[10] | 于梦洁, 吴语童, 罗发祥, 豆义波. 低浓度二氧化碳还原光催化剂结构设计的研究进展[J]. 化工进展, 2024, 43(S1): 335-350. |
[11] | 何世坤, 张荣花, 李昊阳, 潘晖, 冯君锋. 脱铝分子筛固体酸催化葡萄糖制备5-羟甲基糠醛[J]. 化工进展, 2024, 43(S1): 374-381. |
[12] | 张日东, 吕建华, 刘继东, 郭豹, 李文松. Ru-K-NaY催化草酸二甲酯脱羰基制备碳酸二甲酯[J]. 化工进展, 2024, 43(S1): 382-390. |
[13] | 王于华, 周雪, 谷传涛. 用于高性能全聚合物太阳能电池的区域规整的聚小分子受体研究进展[J]. 化工进展, 2024, 43(S1): 391-402. |
[14] | 马桂璇, 徐子桐, 肖志华, 宁国庆, 魏强, 徐春明. 氧硫双掺杂CNTs水系导电剂辅助构筑高性能石墨/SiO负极[J]. 化工进展, 2024, 43(S1): 443-456. |
[15] | 高聪志, 张雅萱, 林璐, 邓晓婷, 殷霞, 丁一刚, 肖艳华, 杜治平. 新戊二醇的合成工艺[J]. 化工进展, 2024, 43(S1): 469-478. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 65
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |