化工进展 ›› 2024, Vol. 43 ›› Issue (12): 6957-6967.DOI: 10.16085/j.issn.1000-6613.2023-2163
• 资源与环境化工 • 上一篇
吕龙义(), 韩沐达, 马培禹, 及文博, 王新元, 高文芳(
), 任芝军(
)
收稿日期:
2023-12-07
修回日期:
2024-02-23
出版日期:
2024-12-15
发布日期:
2025-01-11
通讯作者:
高文芳,任芝军
作者简介:
吕龙义(1989—),男,副教授,博士生导师,研究方向为水污染控制与资源化。E-mail:lvlongyi@hebut.edu.cn。
基金资助:
LYU Longyi(), HAN Muda, MA Peiyu, JI Wenbo, WANG Xinyuan, GAO Wenfang(
), REN Zhijun(
)
Received:
2023-12-07
Revised:
2024-02-23
Online:
2024-12-15
Published:
2025-01-11
Contact:
GAO Wenfang, REN Zhijun
摘要:
厌氧消化是微生物在厌氧环境下降解有机底物并产生沼气的生物处理工艺,在降低能源依赖方面具有巨大潜力。然而传统厌氧技术由于甲烷产率低、微生物富集慢、反应器运行不稳定等问题,造成能源消耗和处理成本不断增加。导电材料可刺激互营细菌和产甲烷古菌之间的种间电子传递,进而提高产甲烷效率,广泛应用于废水厌氧处理领域。本文在梳理了碳基、金属基及其他导电材料介导厌氧消化强化效能的基础上,着重介绍了复合材料协同作用在高效生物降解和运行高稳定性方面的优势。从粒径、导电性能、表面特征等方面论述了材料不同物理化学特性对强化厌氧消化性能的影响,并对导电材料强化废水厌氧生物降解的研究前景进行了展望。
中图分类号:
吕龙义, 韩沐达, 马培禹, 及文博, 王新元, 高文芳, 任芝军. 强化废水厌氧消化过程的导电材料及其特性影响[J]. 化工进展, 2024, 43(12): 6957-6967.
LYU Longyi, HAN Muda, MA Peiyu, JI Wenbo, WANG Xinyuan, GAO Wenfang, REN Zhijun. Conductive materials for enhanced anaerobic digestion of wastewater and influence of their properties[J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6957-6967.
导电材料 | 废水种类 | 投加量/g·L-1 | 反应体系 | 强化效果 | 参考文献 |
---|---|---|---|---|---|
活性炭 | 食物垃圾废水 | 15 | 血清瓶 | 同等OLR下,平均CH4产率为4.7g/(L·d),是无AC反应器的2.5倍 | [ |
颗粒活性炭 | 乳品废水 | 2 | SBR | 在每个循环运行结束时,CH4产量增加了68%~125% | [ |
颗粒活性炭 | 垃圾焚烧渗滤液 | 75 | UASB | 对照组立即变质并在17天内坍塌;GAC组OLR提高到25.0kg/m3时,COD去除率保持在90%左右 | [ |
颗粒活性炭 | 合成废水 | 25 | UASB | COD去除率从56%提高到82%,CH4产量从132mL/g提高到264mL/g | [ |
粉末活性炭 | 葡萄糖、生物油 | 10 | 血清瓶 | CH4产量提高24%,COD去除率提高15% | [ |
粉末活性炭 | 垃圾渗滤液 | 10 | SBR | 与对照组相比,PAC和PAC双反应沉淀组COD去除效率分别提高140%和78% | [ |
生物炭 | 葡萄糖 | 10 | 血清瓶 | CH4产率相比于对照组提高17.80% | [ |
生物炭 | 合成废水 | 5 | UASB | CH4产率相比于对照组提高1.47倍 | [ |
碳布 | 新鲜渗滤液 | 10块 | UASB | 高有机负荷下,COD去除率从30%提高到80% | [ |
碳毡 | 葡萄糖和甘氨酸 | — | CSTR | 相比对照组,实验组的CH4产率提高10.1%~23.0% | [ |
碳纤维 | 丙酸-丁酸盐 | — | CSTR | CH4比产量(mL/g)和产CH4速率(d-1)分别增加约2.4倍和6.7倍 | [ |
单壁碳纳米管 | 葡萄糖 | 1 | CSTR | CH4产量和产率分别提高1.63倍和1.92倍 | [ |
多壁碳纳米管 | 甜菜糖废水 | 1.5 | EGSB | CH4产量相比于对照组提高1.12倍 | [ |
石墨 | 垃圾渗滤液 | — | AnMBR | 当进水COD浓度为3000mg/L时,COD去除率为78%;石墨可有效缓解膜污染 | [ |
石墨毡 | 丙酸盐 | — | ASBR | 与对照组相比,CH4产率提高19.1% | [ |
石墨烯 | 氨基乙酸 | 0.25~2 | 血清瓶 | 材料投加量为0.5~1g/L时,CH4产量提高4%~6% | [ |
纳米石墨烯 | 合成废水 | 0.12 | 血清瓶 | CH4产量和产率分别提高1.5倍和1.51倍 | [ |
表1 碳基导电材料介导废水厌氧消化的强化效果
导电材料 | 废水种类 | 投加量/g·L-1 | 反应体系 | 强化效果 | 参考文献 |
---|---|---|---|---|---|
活性炭 | 食物垃圾废水 | 15 | 血清瓶 | 同等OLR下,平均CH4产率为4.7g/(L·d),是无AC反应器的2.5倍 | [ |
颗粒活性炭 | 乳品废水 | 2 | SBR | 在每个循环运行结束时,CH4产量增加了68%~125% | [ |
颗粒活性炭 | 垃圾焚烧渗滤液 | 75 | UASB | 对照组立即变质并在17天内坍塌;GAC组OLR提高到25.0kg/m3时,COD去除率保持在90%左右 | [ |
颗粒活性炭 | 合成废水 | 25 | UASB | COD去除率从56%提高到82%,CH4产量从132mL/g提高到264mL/g | [ |
粉末活性炭 | 葡萄糖、生物油 | 10 | 血清瓶 | CH4产量提高24%,COD去除率提高15% | [ |
粉末活性炭 | 垃圾渗滤液 | 10 | SBR | 与对照组相比,PAC和PAC双反应沉淀组COD去除效率分别提高140%和78% | [ |
生物炭 | 葡萄糖 | 10 | 血清瓶 | CH4产率相比于对照组提高17.80% | [ |
生物炭 | 合成废水 | 5 | UASB | CH4产率相比于对照组提高1.47倍 | [ |
碳布 | 新鲜渗滤液 | 10块 | UASB | 高有机负荷下,COD去除率从30%提高到80% | [ |
碳毡 | 葡萄糖和甘氨酸 | — | CSTR | 相比对照组,实验组的CH4产率提高10.1%~23.0% | [ |
碳纤维 | 丙酸-丁酸盐 | — | CSTR | CH4比产量(mL/g)和产CH4速率(d-1)分别增加约2.4倍和6.7倍 | [ |
单壁碳纳米管 | 葡萄糖 | 1 | CSTR | CH4产量和产率分别提高1.63倍和1.92倍 | [ |
多壁碳纳米管 | 甜菜糖废水 | 1.5 | EGSB | CH4产量相比于对照组提高1.12倍 | [ |
石墨 | 垃圾渗滤液 | — | AnMBR | 当进水COD浓度为3000mg/L时,COD去除率为78%;石墨可有效缓解膜污染 | [ |
石墨毡 | 丙酸盐 | — | ASBR | 与对照组相比,CH4产率提高19.1% | [ |
石墨烯 | 氨基乙酸 | 0.25~2 | 血清瓶 | 材料投加量为0.5~1g/L时,CH4产量提高4%~6% | [ |
纳米石墨烯 | 合成废水 | 0.12 | 血清瓶 | CH4产量和产率分别提高1.5倍和1.51倍 | [ |
导电材料 | 反应底物 | 投加量/g·L-1 | 反应器 | 强化效果 | 参考文献 |
---|---|---|---|---|---|
针铁矿 | 醋酸、丙酸和丁酸 | 5 | 血清瓶 | CH4产量增加40%~165%,改善酸胁迫下的性能 | [ |
磁铁矿 | 醋酸盐 | 2 | ASTR | COD去除率和CH4产量相比对照组分别提高31.1%和101.5% | [ |
赤铁矿 | 合成废水 | 0.75 | 血清瓶 | CH4产量相比对照组增加35% | [ |
ZVI | 合成废水 | 0.2~5 | 血清瓶 | 投加量为2g/L时,CH4产量提高84.12% | [ |
Fe3O4 | 合成废水 | 10 | ASBR | 最大CH4产率提高15.4%,滞后期缩短13.9% | [ |
Fe2O3 | 合成废水 | 30mmol/L | 血清瓶 | CH4产量相比于对照组提高22.4% | [ |
Fe(OH)3 | 合成废水 | 30mmol/L | 血清瓶 | CH4产量比对照组高38.2% | [ |
nZVI | 合成蔗糖废水 | 50mmol/L | 塑料厌氧反应器 | COD去除率降低30.4%,CH4产量降低22.5% | [ |
nFe3O4 | 合成蔗糖废水 | 50mmol/L | 塑料厌氧反应器 | COD去除率提高26.1%,CH4产量提高76.2% | [ |
表2 金属基导电材料介导废水厌氧消化的强化效果
导电材料 | 反应底物 | 投加量/g·L-1 | 反应器 | 强化效果 | 参考文献 |
---|---|---|---|---|---|
针铁矿 | 醋酸、丙酸和丁酸 | 5 | 血清瓶 | CH4产量增加40%~165%,改善酸胁迫下的性能 | [ |
磁铁矿 | 醋酸盐 | 2 | ASTR | COD去除率和CH4产量相比对照组分别提高31.1%和101.5% | [ |
赤铁矿 | 合成废水 | 0.75 | 血清瓶 | CH4产量相比对照组增加35% | [ |
ZVI | 合成废水 | 0.2~5 | 血清瓶 | 投加量为2g/L时,CH4产量提高84.12% | [ |
Fe3O4 | 合成废水 | 10 | ASBR | 最大CH4产率提高15.4%,滞后期缩短13.9% | [ |
Fe2O3 | 合成废水 | 30mmol/L | 血清瓶 | CH4产量相比于对照组提高22.4% | [ |
Fe(OH)3 | 合成废水 | 30mmol/L | 血清瓶 | CH4产量比对照组高38.2% | [ |
nZVI | 合成蔗糖废水 | 50mmol/L | 塑料厌氧反应器 | COD去除率降低30.4%,CH4产量降低22.5% | [ |
nFe3O4 | 合成蔗糖废水 | 50mmol/L | 塑料厌氧反应器 | COD去除率提高26.1%,CH4产量提高76.2% | [ |
导电材料 | 反应底物 | 投加量/g·L-1 | 反应器 | 强化效果 | 参考文献 |
---|---|---|---|---|---|
PANI | 偶氮染料废水 | 0.1~0.8 | 血清瓶 | 添加0.4g/L PANI可以使厌氧污泥的脱色效率提高约20% | [ |
PANI纳米棒 | 蔗糖 | 0.6 | 血清瓶 | 0.6g/L PANI纳米棒的剂量使CH4的产生加速了约2倍 | [ |
Fe3O4@PANI | 葡萄糖 | 0.6~5.4 | 血清瓶 | CH4产率提高26.98%;最佳用量为0.6g/L | [ |
Fe2O3@PANI | 葡萄糖 | 1.2 | 血清瓶 | Fe2O3@PANI复合改良厌氧系统的CH4产量是添加氧化铁和PANI的系统总和的约1.5倍 | [ |
ZVI@C@PANI | 合成废水 | 1.8~2.5 | 血清瓶 | 在最佳剂量(2g/L)下,与未添加纳米复合材料的厌氧系统相比,CH4产量增加了71.36% | [ |
PPy@PANI | 葡萄糖 | 0.2~1.4 | 血清瓶 | 在初始4h内,CH4产率提高70.2%,产量增加28.3%;最佳用量为0.6g/L | [ |
PU/(PPy+PANI) | 城市废水 | 1.8 | nMBR | 投加PU/(PPy+PANI)的中试组在间歇模式下COD去除率为80% | [ |
PANI水凝胶 | 蔗糖 | 0.1~0.4 | 血清瓶 | 材料添加0.3g/L,CH4生成率提高了28.77% | [ |
PANI + PET | 醋酸钠 | — | 血清瓶 | 与空白组相比,CH4产率提高9% | [ |
PANI + PVDF | 醋酸钠 | — | 血清瓶 | 与空白组相比,CH4产率提高25% | [ |
PPy | 废弃污泥 | 0.3 | 血清瓶 | PPy使累积CH4产量提高了27.83% | [ |
聚乙烯+石墨粉 | 合成废水 | 0.0181~0.0354 | 连续流反应器 | 与无石墨的HDPE组相比,CH4的产率提高7.8%~26.6%;与空白组相比,提高了15.5%~31.3% | [ |
改性黑磷 | 合成废水 | 0.03%~0.15% | 玻璃反应釜 | 质量分数0.03%组沼气产量和TCOD去除率(387.6mL/g和71.5%)高于空白组(326.3mL/g和55.5%) | [ |
高炉粉尘 | 合成废水 | 0.02~0.05 | UASB | CH4产量增加了73%~346% | [ |
胆碱 | 废弃活性污泥 | 0~1 | 蒸煮器 | 以0.75g/L作为最佳胆碱给药浓度,EGs中的累积沼气产量增加了35.55%~36.73% | [ |
次氯酸钙 | 废弃活性污泥 | 0~1.25 | 血清瓶 | CH4含量从0提高到1.0g/L,CH4的产量从(164.8±4.2)mL/g增加到(220.5±6.2)mL/g | [ |
钨酸钠 | 废弃污水污泥 | 0~0.25 | 分批厌氧消化器 | 在钨酸钠存在下,甲烷菌的占比从3.02%显著增加到31.20% | [ |
不锈钢 | 合成废水 | 0~6.4 | UASB | CH4产量从39.4mL/d增加到159.9mL/d | [ |
TiO2 | 合成废水 | 0~2 | 厌氧间歇反应器 | CH4产量相比于对照组提高14% | [ |
泡沫镍 | 乙醇 | 2.45 | 槽式反应器 | CH4的最大产率达到94.5mL/(g·d),与对照相比增加了27.4% | [ |
表3 其他导电材料介导废水厌氧消化的强化效果
导电材料 | 反应底物 | 投加量/g·L-1 | 反应器 | 强化效果 | 参考文献 |
---|---|---|---|---|---|
PANI | 偶氮染料废水 | 0.1~0.8 | 血清瓶 | 添加0.4g/L PANI可以使厌氧污泥的脱色效率提高约20% | [ |
PANI纳米棒 | 蔗糖 | 0.6 | 血清瓶 | 0.6g/L PANI纳米棒的剂量使CH4的产生加速了约2倍 | [ |
Fe3O4@PANI | 葡萄糖 | 0.6~5.4 | 血清瓶 | CH4产率提高26.98%;最佳用量为0.6g/L | [ |
Fe2O3@PANI | 葡萄糖 | 1.2 | 血清瓶 | Fe2O3@PANI复合改良厌氧系统的CH4产量是添加氧化铁和PANI的系统总和的约1.5倍 | [ |
ZVI@C@PANI | 合成废水 | 1.8~2.5 | 血清瓶 | 在最佳剂量(2g/L)下,与未添加纳米复合材料的厌氧系统相比,CH4产量增加了71.36% | [ |
PPy@PANI | 葡萄糖 | 0.2~1.4 | 血清瓶 | 在初始4h内,CH4产率提高70.2%,产量增加28.3%;最佳用量为0.6g/L | [ |
PU/(PPy+PANI) | 城市废水 | 1.8 | nMBR | 投加PU/(PPy+PANI)的中试组在间歇模式下COD去除率为80% | [ |
PANI水凝胶 | 蔗糖 | 0.1~0.4 | 血清瓶 | 材料添加0.3g/L,CH4生成率提高了28.77% | [ |
PANI + PET | 醋酸钠 | — | 血清瓶 | 与空白组相比,CH4产率提高9% | [ |
PANI + PVDF | 醋酸钠 | — | 血清瓶 | 与空白组相比,CH4产率提高25% | [ |
PPy | 废弃污泥 | 0.3 | 血清瓶 | PPy使累积CH4产量提高了27.83% | [ |
聚乙烯+石墨粉 | 合成废水 | 0.0181~0.0354 | 连续流反应器 | 与无石墨的HDPE组相比,CH4的产率提高7.8%~26.6%;与空白组相比,提高了15.5%~31.3% | [ |
改性黑磷 | 合成废水 | 0.03%~0.15% | 玻璃反应釜 | 质量分数0.03%组沼气产量和TCOD去除率(387.6mL/g和71.5%)高于空白组(326.3mL/g和55.5%) | [ |
高炉粉尘 | 合成废水 | 0.02~0.05 | UASB | CH4产量增加了73%~346% | [ |
胆碱 | 废弃活性污泥 | 0~1 | 蒸煮器 | 以0.75g/L作为最佳胆碱给药浓度,EGs中的累积沼气产量增加了35.55%~36.73% | [ |
次氯酸钙 | 废弃活性污泥 | 0~1.25 | 血清瓶 | CH4含量从0提高到1.0g/L,CH4的产量从(164.8±4.2)mL/g增加到(220.5±6.2)mL/g | [ |
钨酸钠 | 废弃污水污泥 | 0~0.25 | 分批厌氧消化器 | 在钨酸钠存在下,甲烷菌的占比从3.02%显著增加到31.20% | [ |
不锈钢 | 合成废水 | 0~6.4 | UASB | CH4产量从39.4mL/d增加到159.9mL/d | [ |
TiO2 | 合成废水 | 0~2 | 厌氧间歇反应器 | CH4产量相比于对照组提高14% | [ |
泡沫镍 | 乙醇 | 2.45 | 槽式反应器 | CH4的最大产率达到94.5mL/(g·d),与对照相比增加了27.4% | [ |
导电材料 | 反应底物 | 投加量 | 反应器 | 强化效果 | 参考文献 |
---|---|---|---|---|---|
Fe3O4+GAC | 合成废水 | 25g/L+40g/L | 两相厌氧反应器 | 与对照组、GAC组和磁铁矿组相比,最高OLR下CH4生产率分别提高80%、70%和31% | [ |
ZVI+GAC | 橘皮废弃物 | 0.3g/g+20g/L | 半连续反应器 | CH4总产量比单一GAC反应器高112% | [ |
ETEA+AC | 合成废水 | 0.005g/L+15g/L | 密封蒸煮器 | 与不添加添加剂的对照组相比,AC+ETEA的平均CH4产量提高50% | [ |
Fe3O4@N-BC | 合成废水 | 5g/L | 血清瓶 | Fe3O4@N-BC组最高累积CH4产量增长1.75倍 | [ |
MGAC | 模拟生活污水 | 6g/L | 血清瓶 | MGAC组CH4产量是对照组的3.6倍,GAC组的1.57倍 | [ |
GAC-Ni | 乙酸盐、丙酸盐 | 0.1g/L | 血清瓶 | 补充GAC-Ni后,以乙酸盐和丙酸盐为原料的反应器的CH4最大产量分别增加54.06%和16.55% | [ |
导电碳布 | 丙酸盐 | 2cm×2cm×0.111mm | 血清瓶 | 与对照相比,累积CH4产量和丙酸盐降解率分别增加15.4%和19.67% | [ |
表4 复合导电材料介导废水厌氧消化的强化效果
导电材料 | 反应底物 | 投加量 | 反应器 | 强化效果 | 参考文献 |
---|---|---|---|---|---|
Fe3O4+GAC | 合成废水 | 25g/L+40g/L | 两相厌氧反应器 | 与对照组、GAC组和磁铁矿组相比,最高OLR下CH4生产率分别提高80%、70%和31% | [ |
ZVI+GAC | 橘皮废弃物 | 0.3g/g+20g/L | 半连续反应器 | CH4总产量比单一GAC反应器高112% | [ |
ETEA+AC | 合成废水 | 0.005g/L+15g/L | 密封蒸煮器 | 与不添加添加剂的对照组相比,AC+ETEA的平均CH4产量提高50% | [ |
Fe3O4@N-BC | 合成废水 | 5g/L | 血清瓶 | Fe3O4@N-BC组最高累积CH4产量增长1.75倍 | [ |
MGAC | 模拟生活污水 | 6g/L | 血清瓶 | MGAC组CH4产量是对照组的3.6倍,GAC组的1.57倍 | [ |
GAC-Ni | 乙酸盐、丙酸盐 | 0.1g/L | 血清瓶 | 补充GAC-Ni后,以乙酸盐和丙酸盐为原料的反应器的CH4最大产量分别增加54.06%和16.55% | [ |
导电碳布 | 丙酸盐 | 2cm×2cm×0.111mm | 血清瓶 | 与对照相比,累积CH4产量和丙酸盐降解率分别增加15.4%和19.67% | [ |
1 | PAN Chao, FU Xindi, LU Wenjing, et al. Effects of conductive carbon materials on dry anaerobic digestion of sewage sludge: Process and mechanism[J]. Journal of Hazardous Materials, 2020, 384: 121339. |
2 | ZHURAVLEVA Elena A, SHEKHURDINA Svetlana V, KOTOVA Irina B, et al. Effects of various materials used to promote the direct interspecies electron transfer on anaerobic digestion of low-concentration swine manure[J]. The Science of the Total Environment, 2022, 839: 156073. |
3 | GAHLOT Pallavi, AHMED Banafsha, TIWARI Satya Brat, et al. Conductive material engineered direct interspecies electron transfer (DIET) in anaerobic digestion: Mechanism and application[J]. Environmental Technology & Innovation, 2020, 20: 101056. |
4 | WU Linjun, JIN Tao, CHEN Hong, et al. Conductive materials as fantastic toolkits to stimulate direct interspecies electron transfer in anaerobic digestion: New insights into methanogenesis contribution, characterization technology, and downstream treatment[J]. Journal of Environmental Management, 2023, 326(Pt B): 116732. |
5 | LIU Yiwei, LI Xiang, WU Shaohua, et al. Enhancing anaerobic digestion process with addition of conductive materials[J]. Chemosphere, 2021, 278: 130449. |
6 | 王梦妍, 王倩, 李雅婕, 等. 导电材料强化厌氧处理技术研究进展[J]. 工业水处理, 2023, 43(10): 42-52. |
WANG Mengyan, WANG Qian, LI Yajie, et al. Research progress of conductive material enhanced anaerobic treatment technology[J]. Industrial Water Treatment, 2023, 43(10): 42-52. | |
7 | Jae Hac KO, WANG Ning, YUAN Tugui, et al. Effect of nickel-containing activated carbon on food waste anaerobic digestion[J]. Bioresource Technology, 2018, 266: 516-523. |
8 | LIU Kaili, Longyi LYU, LI Weiguang, et al. Micro-aeration and leachate recirculation for the acceleration of landfill stabilization: Enhanced hydrolytic acidification by facultative bacteria[J]. Bioresource Technology, 2023, 387: 129615. |
9 | LU Peili, WANG Xuewen, TANG Yingshuang, et al. Granular activated carbon assisted nitrate-dependent anaerobic methane oxidation-membrane bioreactor: Strengthening effect and mechanisms[J]. Environment International, 2020, 138: 105675. |
10 | SUN Ziyan, FENG Lu, LI Yeqing, et al. The role of electrochemical properties of biochar to promote methane production in anaerobic digestion[J]. Journal of Cleaner Production, 2022, 362: 132296. |
11 | LOGAN Mohanakrishnan, TAN Lea Chua, NZETEU Corine Orline, et al. Enhanced anaerobic digestion of dairy wastewater in a granular activated carbon amended sequential batch reactor[J]. Global Change Biology Bioenergy, 2022, 14(7): 840-857. |
12 | LEI Yuqing, SUN Dezhi, DANG Yan, et al. Metagenomic analysis reveals that activated carbon aids anaerobic digestion of raw incineration leachate by promoting direct interspecies electron transfer[J]. Water Research, 2019, 161: 570-580. |
13 | ZHANG Yingdi, ZHANG Lei, GUO Bing, et al. Granular activated carbon stimulated microbial physiological changes for enhanced anaerobic digestion of municipal sewage[J]. Chemical Engineering Journal, 2020, 400: 125838. |
14 | SHANMUGAM Saravanan R, ADHIKARI Sushil, Hyungseok NAM, et al. Effect of bio-char on methane generation from glucose and aqueous phase of algae liquefaction using mixed anaerobic cultures[J]. Biomass and Bioenergy, 2018, 108: 479-486. |
15 | AZIZ Shuokr Qarani, AZIZ Hamidi Abdul, YUSOFF Mohd Suffian. Powdered activated carbon augmented double react-settle sequencing batch reactor process for treatment of landfill leachate[J]. Desalination, 2011, 277(1/2/3): 313-320. |
16 | ZHAO Zhiqiang, ZHANG Yaobin, HOLMES Dawn E, et al. Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors[J]. Bioresource Technology, 2016, 209: 148-156. |
17 | LEI Yuqing, SUN Dezhi, DANG Yan, et al. Stimulation of methanogenesis in anaerobic digesters treating leachate from a municipal solid waste incineration plant with carbon cloth[J]. Bioresource Technology, 2016, 222: 270-276. |
18 | FENG Dong, XIA Ao, HUANG Yun, et al. Effects of carbon cloth on anaerobic digestion of high concentration organic wastewater under various mixing conditions[J]. Journal of Hazardous Materials, 2022, 423(Pt A): 127100. |
19 | BARUA Sajib, ZAKARIA Basem S, DHAR Bipro Ranjan. Enhanced methanogenic co-degradation of propionate and butyrate by anaerobic microbiome enriched on conductive carbon fibers[J]. Bioresource Technology, 2018, 266: 259-266. |
20 | YAN Wangwang, SHEN Nan, XIAO Yeyuan, et al. The role of conductive materials in the start-up period of thermophilic anaerobic system[J]. Bioresource Technology, 2017, 239: 336-344. |
21 | AMBUCHI John J, ZHANG Zhaohan, SHAN Lili, et al. Response of anaerobic granular sludge to iron oxide nanoparticles and multi-wall carbon nanotubes during beet sugar industrial wastewater treatment[J]. Water Research, 2017, 117: 87-94. |
22 | NABI Mohammad, GAO Dawen, LIANG Hong, et al. Landfill leachate treatment by graphite engineered anaerobic membrane bioreactor: Performance enhancement and membrane fouling mitigation[J]. Environmental Research, 2022, 214(Pt2): 114010. |
23 | ZHANG Mingyuan, MA Yunqian, JI Dandan, et al. Synergetic promotion of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with graphite felt in anaerobic digestion[J]. Bioresource Technology, 2019, 287: 121373. |
24 | LIN Richen, DENG Chen, CHENG Jun, et al. Graphene facilitates biomethane production from protein-derived glycine in anaerobic digestion[J]. iScience, 2018, 10: 158-170. |
25 | TIAN Tian, QIAO Sen, LI Xue, et al. Nano-graphene induced positive effects on methanogenesis in anaerobic digestion[J]. Bioresource Technology, 2017, 224: 41-47. |
26 | REN Shuang, USMAN Muhammad, TSANG Daniel C W, et al. Hydrochar-facilitated anaerobic digestion: Evidence for direct interspecies electron transfer mediated through surface oxygen-containing functional groups[J]. Environmental Science & Technology, 2020, 54(9): 5755-5766. |
27 | MA Jiaying, WEI Huawei, SU Yinglong, et al. Powdered activated carbon facilitates methane productivity of anaerobic co-digestion via acidification alleviating: Microbial and metabolic insights[J]. Bioresource Technology, 2020, 313: 123706. |
28 | 高心怡, 夏天, 徐向阳, 等. 碳材料促进废水厌氧处理中直接种间电子传递的研究进展[J]. 化工环保, 2017, 37(3): 270-275. |
GAO Xinyi, XIA Tian, XU Xiangyang, et al. Review on carbon material promoting direct interspecies electron transfer in anaerobic wastewater treatment[J]. Environmental Protection of Chemical Industry, 2017, 37(3): 270-275. | |
29 | 罗景阳, 邵钱祺, 王凤, 等. 碳基材料对有机废弃物厌氧消化的影响及作用机制研究进展[J]. 同济大学学报(自然科学版), 2021, 49(12): 1701-1709. |
LUO Jingyang, SHAO Qianqi, WANG Feng, et al. Research progress on effects of carbonaceous materials on anaerobic digestion of organic wastes and underlying mechanisms[J]. Journal of Tongji University (Natural Science), 2021, 49(12): 1701-1709. | |
30 | 尚泽洲, 胜晨静, 汪锐, 等. 不同麦秆生物炭强化餐厨垃圾厌氧消化[J]. 中国环境科学, 2023, 43(5): 2381-2392. |
SHANG Zezhou, SHENG Chenjing, WANG Rui, et al. Anaerobic digestion of food waste enhanced by different wheat straw biochars[J]. China Environmental Science, 2023, 43(5): 2381-2392. | |
31 | LIN Richen, CHENG Jun, ZHANG Jiabei, et al. Boosting biomethane yield and production rate with graphene: The potential of direct interspecies electron transfer in anaerobic digestion[J]. Bioresource Technology, 2017, 239: 345-352. |
32 | ZHAO Danyang, YAN Binghua, LIU Chao, et al. Mitigation of acidogenic product inhibition and elevated mass transfer by biochar during anaerobic digestion of food waste[J]. Bioresource Technology, 2021, 338: 125531. |
33 | ZHANG Yingdi, ZHANG Lei, YU Najiaowa, et al. Enhancing the resistance to H2S toxicity during anaerobic digestion of low-strength wastewater through granular activated carbon (GAC) addition[J]. Journal of Hazardous Materials, 2022, 430: 128473. |
34 | ZHANG Dejin, WEI Yidan, ZHANG Mingjiang, et al. A collaborative strategy for enhanced anaerobic co-digestion of food waste and waste activated sludge by using zero valent iron and ferrous sulfide[J]. Bioresource Technology, 2022, 347: 126420. |
35 | 朱剑锋, 王艳琼, 王红武. 铁氧化物促进微生物直接种间电子传递的机理及其研究现状[J]. 环境化学, 2022, 41(6): 1856-1868. |
ZHU Jianfeng, WANG Yanqiong, WANG Hongwu. A review on enhancement of direct interspecies electron transfer induced by iron oxides and its mechanism[J]. Environmental Chemistry, 2022, 41(6): 1856-1868. | |
36 | XU Suyun, ZHANG Wanqiu, ZUO Liuquan, et al. Comparative facilitation of activated carbon and goethite on methanogenesis from volatile fatty acids[J]. Bioresource Technology, 2020, 302: 122801. |
37 | ZHONG Dan, LI Jinxin, MA Wencheng, et al. Clarifying the synergetic effect of magnetite nanoparticles in the methane production process[J]. Environmental Science and Pollution Research International, 2020, 27(14): 17054-17062. |
38 | AMBUCHI John Justo, ZHANG Zhaohan, DONG Yue, et al. Hematite and multi-walled carbon nanotubes stimulate a faster syntrophic pathway during methanogenic beet sugar industrial wastewater degradation[J]. Applied Microbiology and Biotechnology, 2018, 102(16): 7147-7158. |
39 | ZHONG Yijie, HE Junguo, ZHANG Pengfei, et al. Effects of different particle size of zero-valent iron (ZVI) during anaerobic digestion: Performance and mechanism from genetic level[J]. Chemical Engineering Journal, 2022, 435: 134977. |
40 | YIN Qidong, MIAO Jia, LI Bo, et al. Enhancing electron transfer by ferroferric oxide during the anaerobic treatment of synthetic wastewater with mixed organic carbon[J]. International Biodeterioration & Biodegradation, 2017, 119: 104-110. |
41 | GU Yuyi, QI Xiang, YANG Xufei, et al. Extracellular electron transfer and the conductivity in microbial aggregates during biochemical wastewater treatment: A bottom-up analysis of existing knowledge[J]. Water Research, 2023, 231: 119630. |
42 | LI Shiyang, CAO Yi, ZHAO Zhiqiang, et al. Regulating secretion of extracellular polymeric substances through dosing magnetite and zerovalent iron nanoparticles to affect anaerobic digestion mode[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(10): 9655-9662. |
43 | ZHUANG Haifeng, XIE Qiaona, SHAN Shengdao, et al. Performance, mechanism and stability of nitrogen-doped sewage sludge based activated carbon supported magnetite in anaerobic degradation of coal gasification wastewater[J]. Science of the Total Environment, 2020, 737: 140285. |
44 | WANG Dexin, HAN Yuxing, HAN Hongjun, et al. New insights into enhanced anaerobic degradation of Fischer-Tropsch wastewater with the assistance of magnetite[J]. Bioresource Technology, 2018, 257: 147-156. |
45 | 安彤, 吴宗林, 庞悦, 等. 导电材料强化挥发性脂肪酸互营氧化产甲烷菌群的种间直接电子传递研究进展[J]. 应用与环境生物学报, 2021, 27(3): 800-807. |
AN Tong, WU Zonglin, PANG Yue, et al. Direct interspecies electron transfer strengthened by conductive materials between syntrophic methanogenic communities of volatile fatty acids[J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(3): 800-807. | |
46 | FENG Dong, XIA Ao, WU Shuai, et al. Magnetite as a means to enhance anaerobic digestion of furfural[J]. Journal of Cleaner Production, 2022, 381: 135139. |
47 | YANG Zhiman, GUO Rongbo, SHI Xiaoshuang, et al. Magnetite nanoparticles enable a rapid conversion of volatile fatty acids to methane[J]. RSC Advances, 2016, 6(31): 25662-25668. |
48 | ZHANG Baogang, QIU Rui, LU Lu, et al. Autotrophic vanadium(Ⅴ) bioreduction in groundwater by elemental sulfur and zerovalent iron[J]. Environmental Science & Technology, 2018, 52(13): 7434-7442. |
49 | LIAO Yating, WANG Ying, OUYANG Lingfeng, et al. Conductive polyaniline enhanced decolorization of azo dyes in anaerobic wastewater treatment[J]. ES Food & Agroforestry, 2021, 6: 35-42. |
50 | HU Qian, SUN Dezhi, MA Yong, et al. Conductive polyaniline nanorods enhanced methane production from anaerobic wastewater treatment[J]. Polymer, 2017, 120: 236-243. |
51 | HUANG Wen, ZHOU Jie, HU Qian, et al. Improved methanogenesis in anaerobic wastewater treatment by magnetite@polyaniline (Fe3O4@PANI) composites[J]. Chemosphere, 2022, 296: 133953. |
52 | HU Qian, ZHOU Jie, QIU Bin, et al. Synergistically improved methane production from anaerobic wastewater treatment by iron/polyaniline composite[J]. Advanced Composites and Hybrid Materials, 2021, 4(2): 265-273. |
53 | ZHOU Na, ZHOU Jie, HUANG Wen, et al. Improved methane production from anaerobic wastewater treatment by conductive zero-valent iron@carbon@polyaniline[J]. International Biodeterioration & Biodegradation, 2023, 176: 105524. |
54 | ZHOU Jie, HUANG Wen, QIU Bin, et al. Core-shell structured polyaniline/polypyrrole composites promoted methane production from anaerobic sludge[J]. Chemosphere, 2022, 287(Pt3): 132296. |
55 | ANTONIO-CARMONA Iveth D, MARTÍNEZ-AMADOR Silvia Y, Hugo MARTÍNEZ-GUTIÉRREZ, et al. Semiconducting polyurethane/polypyrrole/polyaniline for microorganism immobilization and wastewater treatment in anaerobic/aerobic sequential packed bed reactors[J]. Journal of Applied Polymer Science, 2015, 132(28): e42242. |
56 | ZHOU Na, WANG Tong, CHEN Suhao, et al. Conductive polyaniline hydrogel enhanced methane production from anaerobic wastewater treatment[J]. Journal of Colloid and Interface Science, 2021, 581(Pt A): 314-322. |
57 | KWON Daeeun, KIM Jeonghwan. Surface modification of polymeric media coated with conductive polyaniline to enhance methane production for anaerobic low-strength wastewater treatment[J]. Applied Surface Science, 2022, 577: 151859. |
58 | QIAN Jin, ZHANG Yichu, BAI Linqin, et al. Revealing the mechanisms of polypyrrole (PPy) enhancing methane production from anaerobic digestion of waste activated sludge (WAS)[J]. Water Research, 2022, 226: 119291. |
59 | LIU Jifu, LIU Tao, CHEN Shuo, et al. Enhancing anaerobic digestion in anaerobic integrated floating fixed-film activated sludge (An-IFFAS) system using novel electron mediator suspended biofilm carriers[J]. Water Research, 2020, 175: 115697. |
60 | AN Jinhang, YUN Sining, WANG Wei, et al. Enhanced methane production in anaerobic co-digestion systems with modified black phosphorus[J]. Bioresource Technology, 2023, 368: 128311. |
61 | YANG Guang, FANG Hongyan, WANG Jie, et al. Enhanced anaerobic digestion of up-flow anaerobic sludge blanket (UASB) by blast furnace dust (BFD): Feasibility and mechanism[J]. International Journal of Hydrogen Energy, 2019, 44(33): 17709-17719. |
62 | JIN Rong, XU Jiajia, WANG Zhuoqin, et al. Successive choline addition enhancing the methanogenesis of waste activated sludge anaerobic digestion: Insight from hydrophilicity, electrochemical performance and microbial community[J]. Journal of Environmental Management, 2023, 327: 116899. |
63 | HU Jiawei, LI Zhuo, TAO Wenquan. How dose calcium hypochlorite promote the methane production from sludge anaerobic digestion: a mechanism study from enhanced biodegradability of recalcitrant substances[J]. Journal of Water Process Engineering, 2022, 50: 103268. |
64 | KUMAR Roy Chapol, SHOTARO Toya, YUKI Hoshiko, et al. Effect of sodium tungstate on anaerobic digestion of waste sewage sludge: Enhanced methane production via increased acetoclastic methanogens[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107524. |
65 | LI Yue, ZHANG Yaobin, YANG Yafei, et al. Potentially direct interspecies electron transfer of methanogenesis for syntrophic metabolism under sulfate reducing conditions with stainless steel[J]. Bioresource Technology, 2017, 234: 303-309. |
66 | Pabel CERVANTES-AVILÉS, Junichi IDA, TODA Tatsuki, et al. Effects and fate of TiO2 nanoparticles in the anaerobic treatment of wastewater and waste sludge[J]. Journal of Environmental Management, 2018, 222: 227-233. |
67 | MEZGEBE Mebrahtu Melake, XU Kaibing, WEI Gang, et al. Polyaniline wrapped manganese dioxide nanorods: Facile synthesis and as an electrode material for supercapacitors with remarkable electrochemical properties[J]. Journal of Alloys and Compounds, 2019, 794: 634-644. |
68 | WEI Yudi, LUO Wenlong, ZHUANG Zhao, et al. Fabrication of ternary MXene/MnO2/polyaniline nanostructure with good electrochemical performances[J]. Advanced Composites and Hybrid Materials, 2021, 4(4): 1082-1091. |
69 | YANG Bo, XU Hui, LIU Yanbiao, et al. Role of GAC-MnO2 catalyst for triggering the extracellular electron transfer and boosting CH4 production in syntrophic methanogenesis[J]. Chemical Engineering Journal, 2020, 383: 123211. |
70 | LEI Yuqing, WEI Lianxue, LIU Tianyuan, et al. Magnetite enhances anaerobic digestion and methanogenesis of fresh leachate from a municipal solid waste incineration plant[J]. Chemical Engineering Journal, 2018, 348: 992-999. |
71 | WANG Gaojun, GAO Xin, LI Qian, et al. Redox-based electron exchange capacity of biowaste-derived biochar accelerates syntrophic phenol oxidation for methanogenesis via direct interspecies electron transfer[J]. Journal of Hazardous Materials, 2020, 390: 121726. |
72 | XIAO Yong, ZHANG Enhua, ZHANG Jingdong, et al. Extracellular polymeric substances are transient media for microbial extracellular electron transfer[J]. Science Advances, 2017, 3(7): e1700623. |
73 | SUN Tianran, LEVIN Barnaby D A, GUZMAN Juan J L, et al. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon[J]. Nature Communications, 2017, 8: 14873. |
74 | WANG Caiqin, WANG Chen, JIN Luonan, et al. Response of syntrophic aggregates to the magnetite loss in continuous anaerobic bioreactor[J]. Water Research, 2019, 164: 114925. |
75 | BAEK Gahyun, JUNG Heejung, KIM Jaai, et al. A long-term study on the effect of magnetite supplementation in continuous anaerobic digestion of dairy effluent—Magnetic separation and recycling of magnetite[J]. Bioresource Technology, 2017, 241: 830-840. |
76 | ZHAO Zhiqiang, ZHANG Yaobin, LI Yang, et al. Potentially shifting from interspecies hydrogen transfer to direct interspecies electron transfer for syntrophic metabolism to resist acidic impact with conductive carbon cloth[J]. Chemical Engineering Journal, 2017, 313: 10-18. |
77 | CALABRÒ Paolo S, FAZZINO Filippo, FOLINO Adele, et al. Improvement of semi-continuous anaerobic digestion of pre-treated orange peel waste by the combined use of zero valent iron and granular activated carbon[J]. Biomass and Bioenergy, 2019, 129: 105337. |
78 | ZHANG Le, Kai-Chee LOH. Synergistic effect of activated carbon and encapsulated trace element additive on methane production from anaerobic digestion of food wastes—Enhanced operation stability and balanced trace nutrition[J]. Bioresource Technology, 2019, 278: 108-115. |
79 | ZHONG Yijie, HE Junguo, ZHANG Pengfei, et al. Novel nitrogen-doped biochar supported magnetite promotes anaerobic digestion: Material characterization and metagenomic analysis[J]. Bioresource Technology, 2023, 369: 128492. |
80 | XU Yanguang, WANG Mingwei, YU Qilin, et al. Enhancing methanogenesis from anaerobic digestion of propionate with addition of Fe oxides supported on conductive carbon cloth[J]. Bioresource Technology, 2020, 302: 122796. |
81 | LIU Haoyu, XU Ying, LI Lei, et al. A novel green composite conductive material enhancing anaerobic digestion of waste activated sludge via improving electron transfer and metabolic activity[J]. Water Research, 2022, 220: 118687. |
82 | YOON So Yeon, KIM Min Ji, KIM Hye Won, et al. Hydrophilic sulfurized nanoscale zero-valent iron for enhancing in situ biocatalytic denitrification: Mechanisms and long-term column studies[J]. Journal of Hazardous Materials, 2023, 452: 131197. |
83 | SHI Jingxin, HAN Hongjun, XU Chunyan. A novel enhanced anaerobic biodegradation method using biochar and Fe(OH)3@biochar for the removal of nitrogen heterocyclic compounds from coal gasification wastewater[J]. The Science of the Total Environment, 2019, 697: 134052. |
84 | WANG Ning, YUAN Tugui, Jae Hac KO, et al. Enhanced syntrophic metabolism of propionate and butyrate via nickel-containing activated carbon during anaerobic digestion[J]. Journal of Material Cycles and Waste Management, 2020, 22(5): 1529-1538. |
85 | AN Tianyi, CHANG Yaofeng, XIE Junxiang, et al. Deciphering physicochemical properties and enhanced microbial electron transfer capacity by magnetic biochar[J]. Bioresource Technology, 2022, 363: 127894. |
86 | Gabriel CAPSON-TOJO, MOSCOVIZ Roman, RUIZ Diane, et al. Addition of granular activated carbon and trace elements to favor volatile fatty acid consumption during anaerobic digestion of food waste[J]. Bioresource Technology, 2018, 260: 157-168. |
87 | ZHAO Zhiqiang, LI Yang, ZHANG Yaobin, et al. Sparking anaerobic digestion: Promoting direct interspecies electron transfer to enhance methane production[J]. iScience, 2020, 23(12): 101794. |
88 | LIU Fanghua, ROTARU Amelia-Elena, SHRESTHA Pravin M, et al. Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange[J]. Environmental Microbiology, 2015, 17(3): 648-655. |
89 | 姜谦, 张衍, 刘和. 导电碳颗粒促进污泥厌氧消化及微生物种间电子传递的研究进展[J]. 微生物学通报, 2019, 46(8): 1998-2008. |
JIANG Qian, ZHANG Yan, LIU He. A review on enhancement of sludge anaerobic digestion and microbial interspecies electron transfer induced by conductive carbon particles[J]. Microbiology China, 2019, 46(8): 1998-2008. | |
90 | LEE Jung-Yeol, LEE Sang-Hoon, PARK Hee-Deung. Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors[J]. Bioresource Technology, 2016, 205: 205-212. |
91 | HE Xia, GUO Zhenyu, LU Jian, et al. Carbon-based conductive materials accelerated methane production in anaerobic digestion of waste fat, oil and grease[J]. Bioresource Technology, 2021, 329: 124871. |
92 | ZENG Shengquan, HARRIS Riley, KAN Eunsung. Effect of alfalfa-derived biochar on anaerobic digestion of dairy manure: 4[J]. Agronomy, 2022, 12(4): 911. |
93 | KATO Souichiro, HASHIMOTO Kazuhito, WATANABE Kazuya. Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals[J]. Environmental Microbiology, 2012, 14(7): 1646-1654. |
94 | CHEN Shanshan, ROTARU Amelia-Elena, LIU Fanghua, et al. Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures[J]. Bioresource Technology, 2014, 173: 82-86. |
95 | PETCHAROEN K, SIRIVAT A. Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method[J]. Materials Science and Engineering: B, 2012, 177(5): 421-427. |
96 | BARAGAÑO D, ALONSO J, GALLEGO J R, et al. Magnetite nanoparticles for the remediation of soils co-contaminated with As and PAHs[J]. Chemical Engineering Journal, 2020, 399: 125809. |
97 | BARUA Sajib, DHAR Bipro Ranjan. Advances towards understanding and engineering direct interspecies electron transfer in anaerobic digestion[J]. Bioresource Technology, 2017, 244(Pt 1): 698-707. |
98 | GU Mengqi, YIN Qidong, LIU Yu, et al. New insights into the effect of direct interspecies electron transfer on syntrophic methanogenesis through thermodynamic analysis[J]. Bioresource Technology Reports, 2019, 7: 100225. |
99 | KONG Xin, WEI Yonghong, XU Shuang, et al. Inhibiting excessive acidification using zero-valent iron in anaerobic digestion of food waste at high organic load rates[J]. Bioresource Technology, 2016, 211: 65-71. |
100 | 赵智强, 李杨, 张耀斌. 厌氧消化中直接种间电子传递产甲烷机理研究与技术应用[J]. 科学通报, 2020, 65(26): 2820-2834. |
ZHAO Zhiqiang, LI Yang, ZHANG Yaobin. Direct interspecies electron transfer in anaerobic digestion: Research and technological application[J]. Chinese Science Bulletin, 2020, 65(26): 2820-2834. | |
101 | FU Lin, WANG Haoqi, HUANG Qiong, et al. Modification of carbon felt anode with graphene/Fe2O3 composite for enhancing the performance of microbial fuel cell[J]. Bioprocess and Biosystems Engineering, 2020, 43(3): 373-381. |
[1] | 吴宇琦, 李江涛, 丁建智, 宋秀兰, 苏冰琴. 焙烧镁铝水滑石脱除厌氧消化沼气中CO2的效果及机制[J]. 化工进展, 2024, 43(9): 5250-5261. |
[2] | 王娟, 卞春林, 陈翔宇, 王莹, 王新东, 左彦鑫, 肖本益. 微好氧厌氧消化研究进展[J]. 化工进展, 2024, 43(7): 4005-4014. |
[3] | 尚高原, 余金鹏, 崔凯, 郭坤. 外加电位对高浓度马铃薯淀粉废水电发酵产甲烷系统的影响[J]. 化工进展, 2024, 43(11): 6533-6542. |
[4] | 奚永兰, 王成成, 叶小梅, 刘洋, 贾昭炎, 曹春晖, 韩挺, 张应鹏, 田雨. 微纳米气泡在厌氧消化中的应用研究进展[J]. 化工进展, 2023, 42(8): 4414-4423. |
[5] | 庄捷, 薛锦辉, 赵斌成, 张文艺. 猪粪厌氧消化进程中重金属与腐殖质的有机结合机制[J]. 化工进展, 2023, 42(6): 3281-3291. |
[6] | 孟晓山, 汤子健, 陈琳, 呼和涛力, 周政忠. 厌氧消化系统酸化预警及调控技术研究进展[J]. 化工进展, 2023, 42(3): 1595-1605. |
[7] | 祝佳欣, 朱雯喆, 徐俊, 谢靖, 王文标, 谢丽. 基于导电材料强化抗生素胁迫厌氧消化的研究进展[J]. 化工进展, 2023, 42(2): 1008-1019. |
[8] | 李晋, 梁家豪, 马文峰, 郭绍辉, 王庆宏, 陈春茂. 热-碱渣预处理强化炼厂剩余活性污泥厌氧消化性能[J]. 化工进展, 2023, 42(12): 6609-6619. |
[9] | 胡玉瑛, 王鑫, 张世豪, 胡锋平, 汪楚乔, 吴静, 许莉, 许高平. 厌氧消化流场可视化技术研究进展[J]. 化工进展, 2023, 42(12): 6535-6543. |
[10] | 刘亚利, 张宏伟, 康晓荣. 微塑料对污泥厌氧消化的影响和机理[J]. 化工进展, 2022, 41(9): 5037-5046. |
[11] | 邵明帅, 张超, 吴华南, 王宁, 陈钦冬, 徐期勇. 水热耦合厌氧消化技术处理餐厨垃圾沼渣沼液及工艺能耗分析[J]. 化工进展, 2022, 41(5): 2733-2742. |
[12] | 郑小梅, 林茹晶, 周文静, 徐泠, 张洪宁, 张昕颖, 谢丽. 微生物电解池辅助CO2甲烷化阴极材料的研究进展[J]. 化工进展, 2022, 41(5): 2476-2486. |
[13] | 阮敏, 孙宇桐, 黄忠良, 李辉, 张轩, 吴希锴, 赵成, 姚世蓉, 张拴保, 张巍, 黄兢. 污泥预处理-厌氧消化体系的能源经济性评价[J]. 化工进展, 2022, 41(3): 1503-1516. |
[14] | 庄海峰, 谢巧娜, 唐浩杰, 吴昊, 薛向东, 单胜道. 磁性材料强化厌氧工艺处理有机废水的研究进展[J]. 化工进展, 2021, 40(7): 3976-3983. |
[15] | 闫雪倩, 裴向军, 杜杰, 米晓慧, 白琳嵚, 马蕊, 张明宽, 钱进. Bi2O2CO3/Fe3O4磁性复合物在环境污染治理领域中的应用[J]. 化工进展, 2021, 40(6): 3515-3525. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 31
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 79
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |