化工进展 ›› 2024, Vol. 43 ›› Issue (11): 6195-6205.DOI: 10.16085/j.issn.1000-6613.2023-1860
• 工业催化 • 上一篇
李彦君(), 管嘉豪, 刘慧敏, 张传典, 武玉祥, 马菁鸿, 田晖
收稿日期:
2023-10-23
修回日期:
2024-03-12
出版日期:
2024-11-15
发布日期:
2024-12-07
通讯作者:
李彦君
作者简介:
李彦君(1986—),男,博士,讲师,研究方向为精细化学品合成。E-mail: leeyanjun@ytu.edu.cn。
基金资助:
LI Yanjun(), GUAN Jiahao, LIU Huimin, ZHANG Chuandian, WU Yuxiang, MA Jinghong, TIAN Hui
Received:
2023-10-23
Revised:
2024-03-12
Online:
2024-11-15
Published:
2024-12-07
Contact:
LI Yanjun
摘要:
采用沉淀法制备了一系列磷钼钒杂多酸催化剂,以氧气为氧化剂,在常压下将其用于异辛醇一步氧化合成异辛酸,考察了钒和铯两种元素添加量以及工艺条件对催化剂性能和反应的影响,并推测了可能的反应机理。结果表明:钒可以加速催化剂的氧化还原循环过程,提高其氧化还原性能,促进催化效率的提升;铯会通过取代杂多酸中的质子影响催化剂的酸性和比表面积。适宜的酸性、高的比表面积以及快速的氧化还原循环过程是催化剂具有高活性和选择性的关键。在所有制备的催化剂中,Cs3H2PMo10V2O40具有最佳的催化效果,在最优反应条件下(溶剂为苯,反应温度为120℃,催化剂用量为异辛醇质量的11%,氧气流量为20mL/min,反应时间为10h),异辛醇转化率可达60.7%,异辛酸选择性为81.5%。催化剂可重复使用5次,具有较好的稳定性。
中图分类号:
李彦君, 管嘉豪, 刘慧敏, 张传典, 武玉祥, 马菁鸿, 田晖. 磷钼钒杂多酸催化异辛醇直接氧化制异辛酸[J]. 化工进展, 2024, 43(11): 6195-6205.
LI Yanjun, GUAN Jiahao, LIU Huimin, ZHANG Chuandian, WU Yuxiang, MA Jinghong, TIAN Hui. Direct oxidation of isooctanol to isooctanoic acid over molybdovanadophosphoric heteropoly acid[J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6195-6205.
催化剂 | 转化率/% | 选择性/% | 收率/% |
---|---|---|---|
HPA | 36.2 | 40.6 | 14.7 |
HPAV | 48.4 | 46.6 | 22.5 |
HPAV2 | 56.4 | 52.1 | 29.4 |
HPAV3 | 51.9 | 50.3 | 26.1 |
表1 不同钒含量杂多酸催化剂的活性评价结果
催化剂 | 转化率/% | 选择性/% | 收率/% |
---|---|---|---|
HPA | 36.2 | 40.6 | 14.7 |
HPAV | 48.4 | 46.6 | 22.5 |
HPAV2 | 56.4 | 52.1 | 29.4 |
HPAV3 | 51.9 | 50.3 | 26.1 |
催化剂 | Cs/P/Mo/V摩尔比 | |
---|---|---|
理论值 | 实验值 | |
HPAV2 | —/1/10/2 | —/0.95/9.89/1.94 |
CsPAV2 | 1/1/10/2 | 1.08/0.91/9.82/1.83 |
Cs2PAV2 | 2/1/10/2 | 2.14/0.95/9.69/1.91 |
Cs3PAV2 | 3/1/10/2 | 2.88/0.93/9.76/1.8 |
Cs4PAV2 | 4/1/10/2 | 3.78/0.92/9.68/1.77 |
Cs5PAV2 | 5/1/10/2 | 4.73/0.94/9.77/1.75 |
表2 不同Cs含量催化剂各元素的理论与实验值比较
催化剂 | Cs/P/Mo/V摩尔比 | |
---|---|---|
理论值 | 实验值 | |
HPAV2 | —/1/10/2 | —/0.95/9.89/1.94 |
CsPAV2 | 1/1/10/2 | 1.08/0.91/9.82/1.83 |
Cs2PAV2 | 2/1/10/2 | 2.14/0.95/9.69/1.91 |
Cs3PAV2 | 3/1/10/2 | 2.88/0.93/9.76/1.8 |
Cs4PAV2 | 4/1/10/2 | 3.78/0.92/9.68/1.77 |
Cs5PAV2 | 5/1/10/2 | 4.73/0.94/9.77/1.75 |
催化剂 | SBET/m2·g-1 | Vpore/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
HPAV2 | 5.6 | 0.007 | 27.3 |
CsPAV2 | 8.1 | 0.008 | 39.9 |
Cs2PAV2 | 10.2 | 0.008 | 31.2 |
Cs3PAV2 | 52.6 | 0.015 | 33.1 |
Cs4PAV2 | 73.2 | 0.022 | 28.8 |
Cs5PAV2 | 90.6 | 0.032 | 25.7 |
表3 催化剂的BET比表面积、孔容及平均孔径
催化剂 | SBET/m2·g-1 | Vpore/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
HPAV2 | 5.6 | 0.007 | 27.3 |
CsPAV2 | 8.1 | 0.008 | 39.9 |
Cs2PAV2 | 10.2 | 0.008 | 31.2 |
Cs3PAV2 | 52.6 | 0.015 | 33.1 |
Cs4PAV2 | 73.2 | 0.022 | 28.8 |
Cs5PAV2 | 90.6 | 0.032 | 25.7 |
催化剂 | 总算量/mmol·gcat-1 |
---|---|
CsPAV2 | 1.82 |
Cs2PAV2 | 1.47 |
Cs3PAV2 | 0.95 |
Cs4PAV2 | 0.23 |
Cs5PAV2 | 0.06 |
表4 CsnPAV2催化剂的酸量
催化剂 | 总算量/mmol·gcat-1 |
---|---|
CsPAV2 | 1.82 |
Cs2PAV2 | 1.47 |
Cs3PAV2 | 0.95 |
Cs4PAV2 | 0.23 |
Cs5PAV2 | 0.06 |
催化剂 | 异辛醇转化率/% | 异辛酸选择性/% | 异辛酸收率/% |
---|---|---|---|
CsPAV2 | 45.4 | 41.6 | 18.9 |
Cs2PAV2 | 46.9 | 52.2 | 24.5 |
Cs3PAV2 | 56.3 | 80.2 | 45.2 |
Cs4PAV2 | 34.3 | 77.3 | 26.5 |
Cs5PAV2 | 16.9 | 78.6 | 13.3 |
表5 CsnPAV2催化剂的活性评价结果
催化剂 | 异辛醇转化率/% | 异辛酸选择性/% | 异辛酸收率/% |
---|---|---|---|
CsPAV2 | 45.4 | 41.6 | 18.9 |
Cs2PAV2 | 46.9 | 52.2 | 24.5 |
Cs3PAV2 | 56.3 | 80.2 | 45.2 |
Cs4PAV2 | 34.3 | 77.3 | 26.5 |
Cs5PAV2 | 16.9 | 78.6 | 13.3 |
使用次数 | 异辛醇转化率/% | 异辛酸选择性/% | 异辛酸收率/% |
---|---|---|---|
1 | 60.7 | 81.5 | 49.5 |
2 | 58.5 | 82.2 | 48.1 |
3 | 61.6 | 78.2 | 48.1 |
4 | 58.7 | 80.3 | 47.1 |
5 | 55.8 | 80.6 | 45.0 |
表6 Cs3PAV2催化剂重复使用的活性评价结果
使用次数 | 异辛醇转化率/% | 异辛酸选择性/% | 异辛酸收率/% |
---|---|---|---|
1 | 60.7 | 81.5 | 49.5 |
2 | 58.5 | 82.2 | 48.1 |
3 | 61.6 | 78.2 | 48.1 |
4 | 58.7 | 80.3 | 47.1 |
5 | 55.8 | 80.6 | 45.0 |
催化剂 | 温度 /℃ | 转化率 /% | 选择性 /% | 收率①/% | 收率②/% | 参考文献 |
---|---|---|---|---|---|---|
TEMPO/Cu(NO3)2·3H2O | 100 | 99.4 | 77.6 | 77.1 | — | [ |
Fe2O3/SiO2 | 120 | 40.6 | 55.1 | 22.4 | — | [ |
ZnFe2O4 | 120 | 39.6 | 46.7 | 18.5 | — | [ |
ZnO/γ-Al2O3 | 120 | 42.4 | 42.7 | 18.1 | — | [ |
ZSM-5/HMS | 120 | 49.2 | 58.9 | 29.0 | 25.4 | [ |
ZnO-MgO/SiO2 | 125 | 63.6 | 75.4 | 47.9 | — | [ |
Cs3H2PMo10V2O40 | 120 | 60.7 | 81.5 | 49.5 | 45.0 | 本文 |
表7 各种催化剂催化异辛醇氧化为异辛酸的催化性能比较
催化剂 | 温度 /℃ | 转化率 /% | 选择性 /% | 收率①/% | 收率②/% | 参考文献 |
---|---|---|---|---|---|---|
TEMPO/Cu(NO3)2·3H2O | 100 | 99.4 | 77.6 | 77.1 | — | [ |
Fe2O3/SiO2 | 120 | 40.6 | 55.1 | 22.4 | — | [ |
ZnFe2O4 | 120 | 39.6 | 46.7 | 18.5 | — | [ |
ZnO/γ-Al2O3 | 120 | 42.4 | 42.7 | 18.1 | — | [ |
ZSM-5/HMS | 120 | 49.2 | 58.9 | 29.0 | 25.4 | [ |
ZnO-MgO/SiO2 | 125 | 63.6 | 75.4 | 47.9 | — | [ |
Cs3H2PMo10V2O40 | 120 | 60.7 | 81.5 | 49.5 | 45.0 | 本文 |
加入量① | 异辛醇转化率/% | 2-乙基己醛收率/% | 异辛酸收率/% |
---|---|---|---|
0② | 60.7 | 6.3 | 49.5 |
0.1%② | 57.9 | 40.5 | 12.1 |
1%② | 55.2 | 47.4 | 0.3 |
0③ | 1.2 | 0.7 | — |
0④ | 68.3 | 5.7 | 58.5 |
表8 水对异辛醇氧化反应过程的影响
加入量① | 异辛醇转化率/% | 2-乙基己醛收率/% | 异辛酸收率/% |
---|---|---|---|
0② | 60.7 | 6.3 | 49.5 |
0.1%② | 57.9 | 40.5 | 12.1 |
1%② | 55.2 | 47.4 | 0.3 |
0③ | 1.2 | 0.7 | — |
0④ | 68.3 | 5.7 | 58.5 |
1 | 刘晓丹. 异辛酸的市场前景及发展趋势[J]. 化工管理, 2021(31): 3-4. |
LIU Xiaodan. Different and bitter market prospects and development trend[J]. Chemical Engineering Management, 2021(31): 3-4. | |
2 | 松文. 异辛酸的生产技术与市场[J]. 乙醛醋酸化工, 2008(10): 30-31. |
SONG Wen. Production technology and market of iso-caprylic acid[J]. Acetaldehyde Acetic Acid Chemical Industry, 2008(10): 30-31. | |
3 | 傅俊红, 章金富, 沈健. 固体酸催化合成增塑剂三甘醇二异辛酸酯[J]. 塑料工业, 2011, 39(S2): 31-33. |
FU Junhong, ZHANG Jinfu, SHEN Jian. Synthesis of plasticizer triethylene glycol di-2-ethylhexoate using solid acid catalyst[J]. China Plastics Industry, 2011, 39(S2): 31-33. | |
4 | 王吉林, 王璐璐, 齐帮峰. 异辛酸锂汽油抗爆剂的制备及应用[J]. 石油炼制与化工, 2009, 40(8): 59-62. |
WANG Jilin, WANG Lulu, QI Bangfeng. Synthesis and application of lithium isocaprylate as gasoline antiknock additives[J]. Petroleum Processing and Petrochemicals, 2009, 40(8): 59-62. | |
5 | 韦晓竹, 侯永江, 耿媛媛. 增塑剂三甘醇二异辛酸酯的合成[J]. 塑料工业, 2009, 37(6): 6-9. |
WEI Xiaozhu, HOU Yongjiang, GENG Yuanyuan. Study on synthesis of plasticizer triethylene glycol di-2-ethylhexoate[J]. China Plastics Industry, 2009, 37(6): 6-9. | |
6 | 郑香兰, 屈叶青, 唐鹏武, 等. 异辛酸的生产与供需现状分析[J]. 石油化工技术与经济, 2020, 36(4): 15-18. |
ZHENG Xianglan, QU Yeqing, TANG Pengwu, et al. Production and supply-demand analysis of 2-ethylhexanoic acid[J]. Technology & Economics in Petrochemicals, 2020, 36(4): 15-18. | |
7 | Martin KÖNIGSMANN, DONATI Nicola, STEIN Daniel, et al. Metalloenzyme inspired catalysis: Selective oxidation of primary alcohols with an iridium aminyl-radical-complex[J]. Angewandte Chemie International Edition, 2007, 46(19): 3567-3570. |
8 | ZHU Yingguang, ZHAO Baoguo, SHI Yian. Highly efficient Cu(Ⅰ)-catalyzed oxidation of alcohols to ketones and aldehydes with diaziridinone[J]. Organic Letters, 2013, 15(5): 992-995. |
9 | MA Shengming, LIU Jinxian, LI Suhua, et al. Development of a general and practical iron nitrate/TEMPO-catalyzed aerobic oxidation of alcohols to aldehydes/ketones: Catalysis with table salt[J]. Advanced Synthesis & Catalysis, 2011, 353(6): 1005-1017. |
10 | WANG Zhe, FENG Jiangjiang, LI Xiaoliang, et al. Au-Pd nanoparticles immobilized on TiO2 nanosheet as an active and durable catalyst for solvent-free selective oxidation of benzyl alcohol[J]. Journal of Colloid and Interface Science, 2021, 588: 787-794. |
11 | WEERACHAWANASAK Patcharaporn, HUTCHINGS Graham J, EDWARDS Jennifer K, et al. Surface functionalized TiO2 supported Pd catalysts for solvent-free selective oxidation of benzyl alcohol[J]. Catalysis Today, 2015, 250: 218-225. |
12 | LIU Juanjuan, ZOU Shihui, WU Jiachao, et al. Green catalytic oxidation of benzyl alcohol over Pt/ZnO in base-free aqueous medium at room temperature[J]. Chinese Journal of Catalysis, 2018, 39(6): 1081-1089. |
13 | ZHUANG Jinliang, LIU Xiangyue, ZHANG Yu, et al. Zr-metal-organic frameworks featuring TEMPO radicals: Synergistic effect between TEMPO and hydrophilic Zr-node defects boosting aerobic oxidation of alcohols[J]. ACS Applied Materials & Interfaces, 2019, 11(3): 3034-3043. |
14 | 万宇, 单玉华, 施骏, 等. 无碱条件下氧气催化氧化2-乙基己醇合成2-乙基己酸[J]. 精细化工, 2016, 33(6): 654-659. |
WAN Yu, SHAN Yuhua, SHI Jun, et al. Base-free catalytic oxidation of 2-ethylhexanol to 2-ethylhexnoic acid with oxygen[J]. Fine Chemicals, 2016, 33(6): 654-659. | |
15 | 张耀中, 赵彬侠, 张小里, 等. Fe2O3/SiO2对异辛醇氧化生成异辛酸反应的催化性能研究[J]. 分子催化, 2009, 23(6): 529-533. |
ZHANG Yaozhong, ZHAO Binxia, ZHANG Xiaoli, et al. Oxidation of 2-ethylhexanol to 2-ethylhexanoic acid using Fe2O3/SiO2 catalyst[J]. Journal of Molecular Catalysis, 2009, 23(6): 529-533. | |
16 | 路程, 章毅, 张耀中. ZnFe2O4焙烧温度对异辛醇氧化生成异辛酸性能的研究[J]. 广州化工, 2015, 43(17): 101-102. |
LU Cheng, ZHANG Yi, ZHANG Yaozhong. Influence of calcination temperature on the oxidation of 2-ethylhexanol to 2-ethylhexanoic acid properties of ZnFe2O4 [J]. Guangzhou Chemical Industry, 2015, 43(17): 101-102. | |
17 | 路程, 章毅, 张耀中. Zn/Fe摩尔比对Zn x Fe y O4催化异辛醇生成异辛酸性能的研究[J]. 化工管理, 2015(20): 42-43. |
LU Cheng, ZHANG Yi, ZHANG Yaozhong. Study on the catalytic performance of Zn x Fe y O4 for isooctanol to isooctanoic acid[J]. Chemical Enterprise Management, 2015(20): 42-43. | |
18 | 路程, 赵彬侠, 张耀中, 等. 焙烧温度对异辛醇生成异辛酸性能的影响[J]. 西安科技大学学报, 2011, 31(2): 205-208, 240. |
LU Cheng, ZHAO Binxia, ZHANG Yaozhong, et al. Influence of calcination temperature on the oxidation of 2-ethylhexanol to 2-ethylhexanoic acid properties of ZnO/γ-Al2O3 [J]. Journal of Xi’an University of Science and Technology, 2011, 31(2): 205-208, 240. | |
19 | GAO Wenqiang, ZHAO Binxia, FAN Xiaoxiao, et al. Production of iso-octanoic acid via efficiently synergetic catalysis of Zn-modified ZSM-5/HMS[J]. Catalysis Letters, 2022, 152(5): 1461-1475. |
20 | RAFIEE E, EAVANI S. Heterogenization of heteropoly compounds: A review of their structure and synthesis[J]. RSC Advances, 2016, 6(52): 46433-46466. |
21 | 王恩波, 胡长文, 许林. 多酸化学导论[M]. 北京: 化学工业出版社, 1998. |
WANG Enbo, HU Changwen, XU Lin. Introduction to polyacid chemistry[M]. Beijing: Chemical Industry Press, 1998. | |
22 | MAHBOUB Mohammad Jaber Darabi, DUBOIS Jean-Luc, CAVANI Fabrizio, et al. Catalysis for the synthesis of methacrylic acid and methyl methacrylate[J]. Chemical Society Reviews, 2018, 47(20): 7703-7738. |
23 | SPOJAKINA A A, KOSTOVA N G, SOW B, et al. Thiophene conversion and ethanol oxidation on SiO2-supported 12-PMoV-mixed heteropoly compounds[J]. Catalysis Today, 2001, 65(2/3/4): 315-321. |
24 | MOLINARI Julie E, NAKKA Lingaiah, KIM Taejin, et al. Dynamic surface structures and reactivity of vanadium-containing molybdophosphoric acid (H3+ x PMo12– x V x O40) keggin catalysts during methanol oxidation and dehydration[J]. ACS Catalysis, 2011, 1(11): 1536-1548. |
25 | 邓林江, 张铭远, 钮腾飞. 磷钨酸季铵盐催化异辛醇选择性氧化反应合成异辛酸[J]. 合成化学, 2023, 31(12): 932-938. |
DENG Linjiang, ZHANG Mingyuan, NIU Tengfei. Quaternary ammonium phosphotungstate catalyzes the selective oxidation of isooctanol to synthesize isooctanic acid[J]. Chinese Journal of Synthetic Chemistry, 2023, 31(12): 932-938. | |
26 | 李胜男. 异辛醇催化氧气氧化合成异辛酸的研究[D]. 沈阳: 沈阳工业大学, 2017. |
LI Shengnan. Study on synthesis of isooctanoic acid by catalytic oxidation of oxygen to isooctanol[D]. Shenyang: Shenyang University of Technology, 2017. | |
27 | Claude ROCCHICCIOLI-DELTCHEFF, AOUISSI Ahmed, BETTAHAR Mohamed M, et al. Catalysis by 12-molybdophosphates. 1. catalytic reactivity of 12-molybdophosphoric acid related to its thermal behavior investigated through IR, Raman, polarographic, and X-ray diffraction studies: A comparison with 12-molybdosilicic acid[J]. Journal of Catalysis, 1996, 164(1): 16-27. |
28 | ZHOU Lilong, WANG Lei, ZHANG Suojiang, et al. Effect of vanadyl species in Keggin-type heteropoly catalysts in selective oxidation of methacrolein to methacrylic acid[J]. Journal of Catalysis, 2015, 329: 431-440. |
29 | LIU Yuanyuan, WANG Shuai, LI Yanjun, et al. (NH4)Cu0.2H2.8PMo11VO40 via a hydrothermal homogeneous precipitation method for selective oxidation of methacrolein to methacrylic acid[J]. Applied Catalysis A: General, 2022, 643: 118789. |
30 | MISONO Makoto. Heterogeneous catalysis by heteropoly compounds of molybdenum and tungsten[J]. Catalysis Reviews, 1987, 29(2/3): 269-321. |
31 | ZHOU Lilong, WANG Lei, DIAO Yanyan, et al. Cesium salts supported heteropoly acid for oxidation of methacrolein to methacrylic acid[J]. Molecular Catalysis, 2017, 433: 153-161. |
32 | MARCHAL-ROCH C, LARONZE N, GUILLOU N, et al. Study of ammonium, mixed ammonium-cesium and cesium salts derived from (NH4)5[PMo11VⅣO40] as isobutyric acid oxidation catalysts[J]. Applied Catalysis A: General, 2000, 199(1): 33-44. |
33 | LEE Kwan Young, OISHI Syoichi, IGARASHI Hiroshi, et al. Acidic cesium salts of molybdovanadophosphoric acids as efficient catalysts for oxidative dehydrogenation of isobutyric acid[J]. Catalysis Today, 1997, 33(1/2/3): 183-189. |
34 | SUN Miao, ZHANG Jizhe, CAO Chuanjing, et al. Significant effect of acidity on catalytic behaviors of Cs-substituted polyoxometalates for oxidative dehydrogenation of propane[J]. Applied Catalysis A: General, 2008, 349(1/2): 212-221. |
35 | JING Fangli, KATRYNIOK Benjamin, Elisabeth BORDES-RICHARD, et al. Improvement of the catalytic performance of supported (NH4)3HPMo11VO40 catalysts in isobutane selective oxidation[J]. Catalysis Today, 2013, 203: 32-39. |
36 | JING Fangli, KATRYNIOK Benjamin, DUMEIGNIL Franck, et al. Catalytic selective oxidation of isobutane to methacrylic acid on supported (NH4)3HPMo11VO40 catalysts[J]. Journal of Catalysis, 2014, 309: 121-135. |
37 | 严宏贵, 章毅. 5%ZnO-3%MgO/SiO2催化2-乙基己醇直接合成2-乙基己酸[J]. 广州化工, 2012, 40(15): 122-123, 138. |
YAN Honggui, ZHANG Yi. Direct synthesis of 2-ethylhexanoic acid from 2-ethylhexanol catalyzed by 5%ZnO-3%MgO/SiO2 [J]. Guangzhou Chemical Industry, 2012, 40(15): 122-123, 138. | |
38 | MALLAT Tamas, BAIKER Alfons. Oxidation of alcohols with molecular oxygen on solid catalysts[J]. Chemical Reviews, 2004, 104(6): 3037-3058. |
39 | 路程. 异辛醇氧气氧化法合成异辛酸的研究[D]. 西安: 西北大学, 2011. |
LU Cheng. Study on synthesis of 2-ethylhexoic acid by oxidation of 2-ethylhexanol using O2 [D]. Xi’an: Northwest University, 2011. | |
40 | 张耀中. 分子氧氧化异辛醇生成异辛酸的催化反应研究[D]. 西安: 西北大学, 2010. |
ZHANG Yaozhong. Study on catalytic reaction of molecular oxygen oxidation of isooctanol to isooctanoic acid[D]. Xi’an: Northwest University, 2010. | |
41 | KOMAYA Takashi, MISONO Makoto. Activity patterns of H3PMO12O40 and its alkali salts for oxidation reactions[J]. Chemistry Letters, 1983, 12(8): 1177-1180. |
42 | ZHOU Lilong, WANG Lei, CAO Yunli, et al. The states and effects of copper in Keggin-type heteropolyoxometalate catalysts on oxidation of methacrolein to methacrylic acid[J]. Molecular Catalysis, 2017, 438: 47-54. |
43 | MAKWANA Vinit D, Young-Chan SON, HOWELL Amy R, et al. The role of lattice oxygen in selective benzyl alcohol oxidation using OMS-2 catalyst: A kinetic and isotope-labeling study[J]. Journal of Catalysis, 2002, 210(1): 46-52. |
[1] | 李新月, 李振京, 韩沂杭, 郭永强, 闫瑜, 哈力米热·卡热木拉提, 赵会吉, 柴永明, 刘东, 殷长龙. 油脂加氢脱氧生产绿色柴油催化剂的研究进展[J]. 化工进展, 2024, 43(S1): 351-364. |
[2] | 邹鹏翔, 张明阳, 朱文杰, 郭耀骏, 程婕, 赵妍舒, 袁迎春. 基于CFD的脂肪酸甲酯环氧化用液-液撞击流旋流反应器入口结构优化[J]. 化工进展, 2024, 43(S1): 166-173. |
[3] | 林梅洁, 米烁东, 包成. 金属-掺杂氧化铈体系H2/CO电化学反应机理研究进展[J]. 化工进展, 2024, 43(S1): 209-224. |
[4] | 李帅哲, 聂懿宸, PHIDSAVARD Keomeesay, 顾雯, 张伟, 刘娜, 徐高翔, 刘莹, 李兴勇, 陈玉保. 非贵金属催化生物质加氢脱氧制备烃基生物燃料的研究进展[J]. 化工进展, 2024, 43(S1): 225-242. |
[5] | 熊磊, 丁飞燕, 李聪, 王群乐, 吕起, 翟晓娜, 刘峰. 金属Pt负载型非均相催化剂研究进展[J]. 化工进展, 2024, 43(S1): 295-304. |
[6] | 宋财城, 陈晓贞, 刘丽, 杨成敏, 郑步梅, 尹晓莹, 孙进, 姚运海, 段为宇. 碳基载体负载加氢脱硫催化剂的研究进展[J]. 化工进展, 2024, 43(S1): 305-314. |
[7] | 韩洪晶, 车宇, 田宇轩, 王海英, 张亚男, 陈彦广. 木质素催化氢解催化剂及溶剂的研究进展[J]. 化工进展, 2024, 43(S1): 315-324. |
[8] | 胡兴, 刘易, 杜泽学. 3-氯丙烯直接合成环氧氯丙烷催化剂研究进展[J]. 化工进展, 2024, 43(S1): 325-334. |
[9] | 于梦洁, 吴语童, 罗发祥, 豆义波. 低浓度二氧化碳还原光催化剂结构设计的研究进展[J]. 化工进展, 2024, 43(S1): 335-350. |
[10] | 何世坤, 张荣花, 李昊阳, 潘晖, 冯君锋. 脱铝分子筛固体酸催化葡萄糖制备5-羟甲基糠醛[J]. 化工进展, 2024, 43(S1): 374-381. |
[11] | 张日东, 吕建华, 刘继东, 郭豹, 李文松. Ru-K-NaY催化草酸二甲酯脱羰基制备碳酸二甲酯[J]. 化工进展, 2024, 43(S1): 382-390. |
[12] | 马桂璇, 徐子桐, 肖志华, 宁国庆, 魏强, 徐春明. 氧硫双掺杂CNTs水系导电剂辅助构筑高性能石墨/SiO负极[J]. 化工进展, 2024, 43(S1): 443-456. |
[13] | 高聪志, 张雅萱, 林璐, 邓晓婷, 殷霞, 丁一刚, 肖艳华, 杜治平. 新戊二醇的合成工艺[J]. 化工进展, 2024, 43(S1): 469-478. |
[14] | 陈高祥, 王荣昌, 蒋佳承. 微生物电合成系统阴极电子传递机制和氢介导强化措施[J]. 化工进展, 2024, 43(S1): 504-516. |
[15] | 熊小鹤, 张一楠, 张京晶, 杨富鑫, 谭厚章. 基于沉降炉的锅炉耦合掺烧退役风电有机固废实验[J]. 化工进展, 2024, 43(S1): 555-563. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |