1 |
MAYDANIK Yu F. Loop heat pipes[J]. Applied Thermal Engineering, 2005, 25(5/6): 635-657.
|
2 |
GERASIMOV Yu F, MAIDANIK Yu F, SHCHEGOLEV G T, et al. Low-temperature heat pipes with separate channels for vapor and liquid[J]. Journal of Engineering Physics, 1975, 28(6): 683-685.
|
3 |
董其伍, 王丹, 刘敏珊. 余热回收用热管及热管式换热器的研究[J]. 工业加热, 2007, 36(4): 37-40.
|
|
DONG Qiwu, WANG Dan, LIU Minshan. Research on heat pipe and heat pipe heat exchanger for waste heat recovery[J]. Industrial Heating, 2007, 36(4): 37-40.
|
4 |
OKAMOTO Atsushi, MIYAKITA Takeshi, NAGANO Hosei. On-orbit experiment plan of loop heat pipe and the test results of ground test[J]. Microgravity Science and Technology, 2019, 31(3): 327-337.
|
5 |
PHAN Nguyen, NAGANO Hosei. Novel hybrid structures to improve performance of miniature flat evaporator loop heat pipes for electronics cooling[J]. International Journal of Heat and Mass Transfer, 2022, 195: 123187.
|
6 |
DENG Daxiang, LIANG Dejie, TANG Yong, et al. Evaluation of capillary performance of sintered porous wicks for loop heat pipe[J]. Experimental Thermal and Fluid Science, 2013, 50: 1-9.
|
7 |
胡卓焕, 王冬城, 许佳寅, 等. 双层毛细芯对环路热管传热性能的实验分析[J]. 热科学与技术, 2020, 19(2): 132-138.
|
|
HU Zhuohuan, WANG Dongcheng, XU Jiayin, et al. Experimental analysis on heat transfer performance of loop heat pipes with double-layer wicks[J]. Journal of Thermal Science and Technology, 2020, 19(2): 132-138.
|
8 |
ZHAO Runze, ZHANG Zikang, ZHAO Shuaicheng, et al. Experimental study of flat-disk loop heat pipe with R1233zd(E) for cooling terrestrial electronics[J]. Applied Thermal Engineering, 2021, 197: 117385.
|
9 |
RANJAN Ram, MURTHY Jayathi Y, GARIMELLA Suresh V. Analysis of the wicking and thin-film evaporation characteristics of microstructures[J]. Journal of Heat Transfer, 2009, 131(10): 101001.
|
10 |
HE Song, ZHOU Ping, MA Zhengyuan, et al. Experimental study on transient performance of the loop heat pipe with a pouring porous wick[J]. Applied Thermal Engineering, 2020, 164: 114450.
|
11 |
ZHOU Wenjie, LI Yong, CHEN Zhaoshu, et al. Experimental study on the heat transfer performance of ultra-thin flattened heat pipe with hybrid spiral woven mesh wick structure[J]. Applied Thermal Engineering, 2020, 170: 115009.
|
12 |
JAFARI Davoud, WITS Wessel W. The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion applications: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 420-442.
|
13 |
JAFARI Davoud, WITS Wessel W, GEURTS Bernard J. Metal 3D-printed wick structures for heat pipe application: Capillary performance analysis[J]. Applied Thermal Engineering, 2018, 143: 403-414.
|
14 |
HU Zhuohuan, WANG Dongcheng, XU Jiayin, et al. Development of a loop heat pipe with the 3D printed stainless steel wick in the application of thermal management[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120258.
|
15 |
胡卓焕, 袁成伟, 许佳寅, 等. 金属3D打印复合毛细芯孔径配比对环路热管特性影响[J]. 化工进展, 2022, 41(4): 1715-1724.
|
|
HU Zhuohuan, YUAN Chengwei, XU Jiayin, et al. Effect of metal 3D-printed composite capillary wick on loop heat pipe characteristics[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1715-1724.
|
16 |
黄洁, 王乃华, 程林. 环路热管启动特性模拟[J]. 化工学报, 2014, 65(S1): 297-302.
|
|
HUANG Jie, WANG Naihua, CHENG Lin. Simulation of loop heat pipe start-up characteristic[J]. CIESC Journal, 2014, 65(S1): 297-302.
|
17 |
盖东兴, 刘志春, 刘伟, 等. 重力辅助平板型环路热管实验研究[J]. 热能动力工程, 2010, 25(2): 196-201.
|
|
GAI Dongxing, LIU Zhichun, LIU Wei, et al. Experimental study of a gravity-assisted plate type of loop heat pipe[J]. Journal of Engineering for Thermal Energy and Power, 2010, 25(2): 196-201.
|
18 |
朱震, 王银峰, 熊国辉, 等. 新型水平环路热虹吸管启动性能[J]. 化工学报, 2016, 67(5): 1755-1761.
|
|
ZHU Zhen, WANG Yinfeng, XIONG Guohui, et al. Start-up performance of novel horizontal loop thermosyphon[J]. CIESC Journal, 2016, 67(5): 1755-1761.
|
19 |
徐茂淯, 陶帅, 齐聪, 等. 圆盘式环路热管的启动特性及温度波动[J]. 化工进展, 2023, 42(9): 4531-4537.
|
|
XU Maoyu, TAO Shuai, QI Cong, et al. Start-up and temperature fluctuation of loop heat pipe with flat disk evaporator[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4531-4537.
|
20 |
HUANG B J, HUANG H H, LIANG T L. System dynamics model and startup behavior of loop heat pipe[J]. Applied Thermal Engineering, 2009, 29(14/15): 2999-3005.
|
21 |
XU Jiayin, WANG Zhiyuan, XU Hong, et al. Experimental research on the heat performance of a flat copper-water loop heat pipe with different inventories[J]. Experimental Thermal and Fluid Science, 2017, 84: 110-119.
|
22 |
GAMBOA Adrian R, MORRIS Christopher J, FORSTER Fred K. Improvements in fixed-valve micropump performance through shape optimization of valves[J]. Journal of Fluids Engineering, 2005, 127(2): 339-346.
|
23 |
钱锦远, 陈珉芮, 李晓娟, 等. 特斯拉阀型微通道热沉换热强化的数值研究[J]. 流体机械, 2020, 48(12): 36-42.
|
|
QIAN Jinyuan, CHEN Minrui, LI Xiaojuan, et al. Numerical investigation of heat sink with Tesla valve type microchannel[J]. Fluid Machinery, 2020, 48(12): 36-42.
|
24 |
QIAN Jinyuan, CHEN Minrui, LIU Xueling, et al. A numerical investigation of the flow of nanofluids through a micro Tesla valve[J]. Journal of Zhejiang University SCIENCE A, 2019, 20(1): 50-60.
|
25 |
DE VRIES S F, FLOREA D, HOMBURG F G A, et al. Design and operation of a Tesla-type valve for pulsating heat pipes[J]. International Journal of Heat and Mass Transfer, 2017, 105: 1-11.
|
26 |
LI Jinwang, ZOU Yong, CHENG Lin. Experimental study on capillary pumping performance of porous wicks for loop heat pipe[J]. Experimental Thermal and Fluid Science, 2010, 34(8): 1403-1408.
|