1 |
JUNG S, LEE J, PARK Y K, et al. Bioelectrochemical systems for a circular bioeconomy[J]. Bioresource Technology, 2020, 300: 122748.
|
2 |
GARCÍA T, VESES A, LÓPEZ J M, et al. Determining bio-oil composition via chemometric tools based on infrared spectroscopy[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8710-8719.
|
3 |
AHMAD M S, LIU C G, NAWAZ M, et al. Elucidating the pyrolysis reaction mechanism of Calotropis procera and analysis of pyrolysis products to evaluate its potential for bioenergy and chemicals[J]. Bioresource Technology, 2021, 322: 124545.
|
4 |
DAI Leilei, WANG Yunpu, LIU Yuhuan, et al. A review on selective production of value-added chemicals via catalytic pyrolysis of lignocellulosic biomass[J]. The Science of the Total Environment, 2020, 749: 142386.
|
5 |
KIM Eunjung, GIL Hyungbae, PARK Sangwon, et al. Bio-oil production from pyrolysis of waste sawdust with catalyst ZSM-5[J]. Journal of Material Cycles and Waste Management, 2017, 19(1): 423-431.
|
6 |
QIU Bingbing, TAO Xuedong, WANG Hao, et al. Biochar as a low-cost adsorbent for aqueous heavy metal removal: a review[J]. Journal of Analytical and Applied Pyrolysis, 2021, 155: 105081.
|
7 |
Güray YILDIZ, PRONK Marty, DJOKIC Marko, et al. Validation of a new set-up for continuous catalytic fast pyrolysis of biomass coupled with vapour phase upgrading[J]. Journal of Analytical and Applied Pyrolysis, 2013, 103: 343-351.
|
8 |
BRIDGWATER A V. Review of fast pyrolysis of biomass and product upgrading[J]. Biomass and Bioenergy, 2012, 38: 68-94.
|
9 |
QIU Bingbing, YANG Chenhao, SHAO Qianni, et al. Recent advances on industrial solid waste catalysts for improving the quality of bio-oil from biomass catalytic cracking: a review[J]. Fuel, 2022, 315: 123218.
|
10 |
张妮娜, 裴婷, 张媛, 等. 多级孔ZSM-5分子筛的合成及其金属改性研究进展[J]. 山东化工, 2020, 49(14): 44-46.
|
|
ZHANG Nina, PEI Ting, ZHANG Yuan, et al. Research progress on synthesis and metal modification of hierarchical ZSM-5 zeolite[J]. Shandong Chemical Industry, 2020, 49(14): 44-46.
|
11 |
SHEN Yanfeng, QIN Zhengxing, ASAHINA Shunsuke, et al. The inner heterogeneity of ZSM-5 zeolite crystals[J]. Journal of Materials Chemistry A, 2021, 9(7): 4203-4212.
|
12 |
LI Yingkai, NISHU, YELLEZUOME Dominic, et al. Deactivation mechanism and regeneration effect of bi-metallic Fe-Ni/ZSM-5 catalyst during biomass catalytic pyrolysis[J]. Fuel, 2022, 312: 122924.
|
13 |
HOU Jinyu, ZHONG Daoxu, LIU Wuxing. Catalytic co-pyrolysis of oil sludge and biomass over ZSM-5 for production of aromatic platform chemicals[J]. Chemosphere, 2022, 291(Pt 3): 132912.
|
14 |
CORONAS Joaquín. Present and future synthesis challenges for zeolites[J]. Chemical Engineering Journal, 2010, 156(2): 236-242.
|
15 |
CHAI Meiyun, LIU Ronghou, HE Yifeng. Effects of SiO2/Al2O3 ratio and Fe loading rate of Fe-modified ZSM-5 on selection of aromatics and kinetics of corn stalk catalytic pyrolysis[J]. Fuel Processing Technology, 2020, 206: 106458.
|
16 |
STEFANIDIS S D, KARAKOULIA S A, KALOGIANNIS K G, et al. Natural magnesium oxide (MgO) catalysts: a cost-effective sustainable alternative to acid zeolites for the in situ upgrading of biomass fast pyrolysis oil[J]. Applied Catalysis B: Environmental, 2016, 196: 155-173.
|
17 |
常贵环, 曹吉林, 郭宏飞. 聚乙二醇对合成ZSM-5分子筛形貌影响的研究[J]. 人工晶体学报, 2012, 41(5): 1357-1361, 1375.
|
|
CHANG Guihuan, CAO Jilin, GUO Hongfei. Influence of polyethylene glycol(PEG) on the morphology of ZSM-5 zeolite synthesis[J]. Journal of Synthetic Crystals, 2012, 41(5): 1357-1361, 1375.
|
18 |
CHEN Xueshuai, JIANG Rongli, HOU Huilin, et al. Facile synthesis of an Mg-incorporated ZSM-5 zeolite from dual silicon sources and its application for conversion of methanol to olefins[J]. ChemistrySelect, 2021, 6(28): 7056-7061.
|
19 |
PALIZDAR A, SADRAMELI S M. Catalytic upgrading of beech wood pyrolysis oil over iron- and zinc-promoted hierarchical MFI zeolites[J]. Fuel, 2020, 264: 116813.
|
20 |
DAI Leilei, WANG Yunpu, LIU Yuhuan, et al. Catalytic fast pyrolysis of torrefied corn cob to aromatic hydrocarbons over Ni-modified hierarchical ZSM-5 catalyst[J]. Bioresource Technology, 2019, 272: 407-414.
|
21 |
NI S, LIU Ronghou, RAHMAN Md Maksudur, et al. Catalytic pyrolysis of microcrystalline cellulose extracted from rice straw for high yield of hydrocarbon over alkali modified ZSM-5[J]. Fuel, 2021, 285: 119038.
|
22 |
SZOSTAK R, THOMAS T L. Reassessment of zeolite and molecular sieve framework infrared vibrations[J]. Journal of Catalysis, 1986, 101(2): 549-552.
|