化工进展 ›› 2022, Vol. 41 ›› Issue (10): 5297-5305.DOI: 10.16085/j.issn.1000-6613.2021-2398
收稿日期:
2021-11-23
修回日期:
2022-05-23
出版日期:
2022-10-20
发布日期:
2022-10-21
通讯作者:
伍联营
作者简介:
孙志伟(1997—),男,硕士研究生,研究方向为化学过程系统工程。E-mail:sunzhiwei@stu.ouc.edu.cn。
基金资助:
SUN Zhiwei(), WU Lianying(), HU Yangdong, ZHANG Weitao
Received:
2021-11-23
Revised:
2022-05-23
Online:
2022-10-20
Published:
2022-10-21
Contact:
WU Lianying
摘要:
“双碳目标”对化工生产提出了新的挑战,改善能源供给结构和提升能源利用效率是解决这一问题的重要途径之一。随着能源转换技术和储能技术不断发展和完善,可再生能源利用水平及供应稳定性进一步提高,在替代以化石能源为主的化工公用工程系统方面有着明显的优势,被认为是最具应用前景的新一代化工系统供能方式。本文在可再生能源供能技术的基础上,总结了可再生能源在供热、制冷、供水、供电以及多联产系统等新型化工公用工程中的应用现状,着重突出了可再生能源相比传统化工公用工程在节能减排方面发挥的重要作用。探讨了可再生能源目前在化工公用工程系统中的耦合匹配现状、应用所遇到的问题和挑战,并对其未来发展进行了展望。文章指出,可再生能源化工公用工程将成为解决目前化工环保困境的重要途径。
中图分类号:
孙志伟, 伍联营, 胡仰栋, 张伟涛. 可再生能源在化工生产及其公用工程系统中的应用[J]. 化工进展, 2022, 41(10): 5297-5305.
SUN Zhiwei, WU Lianying, HU Yangdong, ZHANG Weitao. Application status of renewable energy in chemical production and its utilities system[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5297-5305.
方案 | 光伏发电制氢 | 风力发电制氢 | 水力发电制氢 | 生物质发电制氢 |
---|---|---|---|---|
优势 | ①产品氢成本较低;②工艺简单,便于模块化运行;③能够作为储存介质存储太阳能 | ①有效利用风力产电,减少风电波动;②能够作为储存介质存储风能;③有助于实现氢能的综合利用 | ①有助于解决水电弃能问题;②经济效益更好;③有助于减少发电及消费期碳排放 | ①在小规模存储供应氢气方面优势明显;②生物质能丰富,分布地区广,灵活性较高 |
缺陷 | ①发电核心技术有待进一步突破;②区域限制性强 | ①区域限制会加大氢能存储运输成本;②风电间歇性、波动性较强 | ①区域限制性强;②该方向研究应用较少 | ①该方向经济-技术评估水平不足;②生物质发电工艺不成熟 |
发展方向 | ①以点带面,进行示范项目布局规划探索;②突破核心技术,降低成本 | ①探索海上风力发电与制氢工艺耦合情况可行性;②改进技术,降低成本 | ①完善水电制氢产业链;②在水电资源优势地区协调制氢产业同步发展 | ①降低生物质储运成本; ②改善生物质发电技术 |
表1 可再生能源电解制氢方案对比[26]
方案 | 光伏发电制氢 | 风力发电制氢 | 水力发电制氢 | 生物质发电制氢 |
---|---|---|---|---|
优势 | ①产品氢成本较低;②工艺简单,便于模块化运行;③能够作为储存介质存储太阳能 | ①有效利用风力产电,减少风电波动;②能够作为储存介质存储风能;③有助于实现氢能的综合利用 | ①有助于解决水电弃能问题;②经济效益更好;③有助于减少发电及消费期碳排放 | ①在小规模存储供应氢气方面优势明显;②生物质能丰富,分布地区广,灵活性较高 |
缺陷 | ①发电核心技术有待进一步突破;②区域限制性强 | ①区域限制会加大氢能存储运输成本;②风电间歇性、波动性较强 | ①区域限制性强;②该方向研究应用较少 | ①该方向经济-技术评估水平不足;②生物质发电工艺不成熟 |
发展方向 | ①以点带面,进行示范项目布局规划探索;②突破核心技术,降低成本 | ①探索海上风力发电与制氢工艺耦合情况可行性;②改进技术,降低成本 | ①完善水电制氢产业链;②在水电资源优势地区协调制氢产业同步发展 | ①降低生物质储运成本; ②改善生物质发电技术 |
1 | 贾斌广, 刘芳, 王达, 等. 扰流板太阳能空气集热器的流道优化[J]. 化工进展, 2019, 38(2): 819-825. |
JIA Binguang, LIU Fang, WANG Da, et al. Optimization of flow path for the spoiler solar air collector[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 819-825. | |
2 | 胡旺盛, 张少杰, 张昌建, 等. 相变式U形管太阳能集热器性能[J]. 化工进展, 2021, 40(2): 771-777. |
HU Wangsheng, ZHANG Shaojie, ZHANG Changjian, et al. Performance of U-tube solar collector with phase change materials[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 771-777. | |
3 | SURESH N S, RAO B S. Solar energy for process heating: a case study of select Indian industries[J]. Journal of Cleaner Production, 2017, 151: 439-451. |
4 | LIU Qibin, JIN Hongguang, HONG Hui, et al. Performance analysis of a mid- and low-temperature solar receiver/reactor for hydrogen production with methanol steam reforming[J]. International Journal of Energy Research, 2011, 35(1): 52-60. |
5 | BAI Xianhua, LI Sipu, ZHANG Yufan, et al. Solar-heating thermocatalytic H2 production from formic acid by a MoS2-graphene-nickel foam composite[J]. Green Chemistry, 2021, 23(19): 7630-7634. |
6 | 王沣浩, 蔡皖龙, 王铭, 等. 地热能供热技术研究现状及展望[J]. 制冷学报, 2021, 42(1): 14-22. |
WANG Fenghao, CAI Wanlong, WANG Ming, et al. Status and outlook for research on geothermal heating technology[J]. Journal of Refrigeration, 2021, 42(1): 14-22. | |
7 | ØSTERGAARD P A, LUND H. A renewable energy system in Frederikshavn using low-temperature geothermal energy for district heating[J]. Applied Energy, 2011, 88(2): 479-487. |
8 | 马伟斌, 龚宇烈, 赵黛青, 等. 我国地热能开发利用现状与发展[J]. 中国科学院院刊, 2016, 31(2): 199-207. |
MA Weibin, GONG Yulie, ZHAO Daiqing, et al. Geothermal energy exploitation, utilization, and its development trend in China[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(2): 199-207. | |
9 | 周总瑛, 刘世良, 刘金侠. 中国地热资源特点与发展对策[J]. 自然资源学报, 2015, 30(7): 1210-1221. |
ZHOU Zongying, LIU Shiliang, LIU Jinxia. Study on the characteristics and development strategies of geothermal resources in China[J]. Journal of Natural Resources, 2015, 30(7): 1210-1221. | |
10 | SEBESTYÉN T T, PAVIČEVIĆ M, DOROTIĆ H, et al. The establishment of a micro-scale heat market using a biomass-fired district heating system[J]. Energy, Sustainability and Society, 2020, 10: 25. |
11 | 陈晓红, 王智勇, 毛天宇. 生物质成型燃料产业现状与发展前景[J]. 中国资源综合利用, 2018, 36(6): 83-85. |
CHEN Xiaohong, WANG Zhiyong, MAO Tianyu. Present situation and development prospect of biomass briquetting fuel industry[J]. China Resources Comprehensive Utilization, 2018, 36(6): 83-85. | |
12 | 白阳, 闫文刚, 刘志刚. 生物质燃料致密成型方式的发展现状与展望[J]. 林业机械与木工设备, 2018, 46(9): 10-15. |
BAI Yang, YAN Wengang, LIU Zhigang. Development status and prospects of biomass briquette fuel dense molding method[J]. Forestry Machinery & Woodworking Equipment, 2018, 46(9): 10-15. | |
13 | 张世鑫, 陈明光, 吴陈亮, 等. 生物质利用技术进展[J]. 中国资源综合利用, 2019, 37(4): 79-85. |
ZHANG Shixin, CHEN Mingguang, WU Chenliang, et al. Advances in biomass utilization technology[J]. China Resources Comprehensive Utilization, 2019, 37(4): 79-85. | |
14 | 马隆龙, 唐志华, 汪丛伟, 等. 生物质能研究现状及未来发展战略[J]. 可再生能源规模利用, 2019, 34(4): 434-442. |
MA Longlong, TANG Zhihua, WANG Congwei, et al. Research status and future development strategy of biomass energy[J]. Scaled Utilization of Renewable Energy, 2019, 34(4): 434-442. | |
15 | LI T X, WANG R Z, KIPLAGAT J K, et al. Experimental study and comparison of thermochemical resorption refrigeration cycle and adsorption refrigeration cycle[J]. Chemical Engineering Science, 2010, 65(14): 4222-4230. |
16 | FERNANDES M S, BRITES G J V N, COSTA J J, et al. Review and future trends of solar adsorption refrigeration systems[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 102-123. |
17 | SARBU I, SEBARCHIEVICI C. General review of solar-powered closed sorption refrigeration systems[J]. Energy Conversion and Management, 2015, 105: 403-422. |
18 | WANG R Z, JIA J P, ZHU Y H, et al. Study on a new solid absorption refrigeration pair: active carbon fiber-methanol[J]. Journal of Solar Energy Engineering, 1997, 119(3): 214-218. |
19 | WANG Yunfeng, LI Ming, JI Xu, et al. Experimental study of the effect of enhanced mass transfer on the performance improvement of a solar-driven adsorption refrigeration system[J]. Applied Energy, 2018, 224: 417-425. |
20 | BELLOS E, CHATZOVOULOS I, TZIVANIDIS C. Yearly investigation of a solar-driven absorption refrigeration system with ammonia-water absorption pair[J]. Thermal Science and Engineering Progress, 2021, 23: 100885. |
21 | DINO G E, PALOMBA V, NOWAK E, et al. Experimental characterization of an innovative hybrid thermal-electric chiller for industrial cooling and refrigeration application[J]. Applied Energy, 2021, 281: 116098. |
22 | 姚远, 龚宇烈, 陆振能, 等. 中深层地热制冷技术在我国南方地区的应用与展望[J]. 科技促进发展, 2020, 16(S1): 352-358. |
YAO Yuan, GONG Yulie, LU Zhenneng, et al. Application and prospect of mid-deep geothermal refrigeration technology in South China[J]. Science & Technology for Development, 2020, 16(S1): 352-358. | |
23 | GHAEBI H, PARIKHANI T, ROSTAMZADEH H, et al. Proposal and assessment of a novel geothermal combined cooling and power cycle based on Kalina and ejector refrigeration cycles[J]. Applied Thermal Engineering, 2018, 130: 767-781. |
24 | 姜克隽. 碳中和目标下能源的高安全度供应系统[J]. 中国电力企业管理, 2021(7): 22-23. |
JIANG Kejun. A highly secure energy supply system for carbon neutral targets[J]. China Power Enterprise Management, 2021(7): 22-23. | |
25 | 苗青青, 石春艳, 张香平. 碳中和目标下的光伏发电技术[J]. 化工进展, 2022, 41(3): 1125-1131. |
MIAO Qingqing, SHI Chunyan, ZHANG Xiangping. Photovoltaic technology under carbon neutrality[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1125-1131. | |
26 | 郭博文, 罗聃, 周红军. 可再生能源电解制氢技术及催化剂的研究进展[J]. 化工进展, 2021, 40(6): 2933-2951. |
GUO Bowen, LUO Dan, ZHOU Hongjun. Recent advances in renewable energy electrolysis hydrogen production technology and related electrocatalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2933-2951. | |
27 | JIAO Yan, ZHENG Yao, JARONIEC M, et al. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions[J]. Chemical Society Reviews, 2015, 44(8): 2060-2086. |
28 | KOVAČ A, MARCIUŠ D, BUDIN L. Solar hydrogen production via alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2019, 44(20): 9841-9848. |
29 | YADAV D, BANERJEE R. Economic assessment of hydrogen production from solar driven high-temperature steam electrolysis process[J]. Journal of Cleaner Production, 2018, 183: 1131-1155. |
30 | 王聪, 代蓓蓓, 于佳玉, 等. 太阳能光电、光热转换材料的研究现状与进展[J]. 硅酸盐学报, 2017, 45(11): 1555-1568. |
WANG Cong, DAI Beibei, YU Jiayu, et al. Recent development and advance of solar photovoltaic materials and photothermal conversion materials[J]. Journal of the Chinese Ceramic Society, 2017, 45(11): 1555-1568. | |
31 | 韩儒松, 蒋迎花, 康丽霞, 等. 风力发电制氢与氢气网络耦合系统的氢气波动平抑特性分析[J]. 化工进展, 2021, 40(11): 6071-6078. |
HAN Rusong, JIANG Yinghua, KANG Lixia, et al. Analysis of fluctuation suppressing characteristics for hydrogen network coupled with wind power generation system[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6071-6078. | |
32 | 袁铁江, 曹继雷. 计及风电-负荷不确定性的风氢低碳能源系统容量优化配置[J]. 高电压技术, 2021, 48(6): 2037-2044. |
YUAN Tiejiang, CAO Jilei. Capacity optimal allocation of wind hydrogen low-carbon energy system considering wind power-load uncertainty[J]. High Voltage Engineering, 2021, 48(6): 2037-2044. | |
33 | GONZÁLEZ-APARICIO I, PÉREZ-FORTES M, ZUCKER A, et al. Opportunities of integrating CO2 utilization with RES-E: a power-to-methanol business model with wind power generation[J]. Energy Procedia, 2017, 114: 6905-6918. |
34 | TANER T. The novel and innovative design with using H2 fuel of PEM fuel cell: Efficiency of thermodynamic analyze[J]. Fuel, 2021, 302: 121109. |
35 | ZHAO Zhenyu, ZUO Jian, FAN Leilei, et al. Impacts of renewable energy regulations on the structure of power generation in China—A critical analysis[J]. Renewable Energy, 2011, 36(1): 24-30. |
36 | ALLOUHI A, REHMAN S, KRARTI M. Role of energy efficiency measures and hybrid PV/biomass power generation in designing 100% electric rural houses: a case study in Morocco[J]. Energy and Buildings, 2021, 236: 110770. |
37 | AL-HAMED K H M, DINCER I. A novel multigeneration ammonia-based carbon capturing system powered by a geothermal power plant for cleaner applications[J]. Journal of Cleaner Production, 2021, 321: 129017. |
38 | 吴创之, 周肇秋, 阴秀丽, 等. 我国生物质能源发展现状与思考[J]. 农业机械学报, 2009, 40(1): 91-99. |
WU Chuangzhi, ZHOU Zhaoqiu, YIN Xiuli, et al. Current status of biomass energy development in China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(1): 91-99. | |
39 | 莫一波, 黄柳燕, 袁朝兴, 等. 地热能发电技术研究综述[J]. 东方电气评论, 2019, 33(2): 76-80. |
MO Yibo, HUANG Liuyan, YUAN Chaoxin, et al. Reviews of geothermal power generation technologies[J]. Dongfang Electric Review, 2019, 33(2): 76-80. | |
40 | OUESLATI F. Hybrid renewable system based on solar wind and fuel cell energies coupled with diesel engines for Tunisian climate: TRNSYS simulation and economic assessment[J]. International Journal of Green Energy, 2021, 18(4): 402-423. |
41 | CHEN Chao, YANG Aidong. Power-to-methanol: the role of process flexibility in the integration of variable renewable energy into chemical production[J]. Energy Conversion and Management, 2021, 228: 113673. |
42 | RIYAHI N, SARAEI A, VAHDAT AZAD A, et al. Energy analysis and optimization of a hybrid system of reverse osmosis desalination system and solar power plant (case study: Kish Island)[J]. International Journal of Energy and Environmental Engineering, 2022, 13(1): 67-75. |
43 | CARTA J A, CABRERA P. Optimal sizing of stand-alone wind-powered seawater reverse osmosis plants without use of massive energy storage[J]. Applied Energy, 2021, 304: 117888. |
44 | 毛巨正, 郑宏飞, 杨军伟, 等. 多效竖管降膜蒸发太阳能海水淡化装置性能研究[J]. 太阳能学报, 2017, 38(10): 2743-2748. |
MAO Juzheng, ZHENG Hongfei, YANG Junwei, et al. Performance investigation of solar desalination device with multi-effect vertical tube falling film evaporation[J]. Acta Energiae Solaris Sinica, 2017, 38(10): 2743-2748. | |
45 | GHENAI C, KABAKEBJI D, DOUBA I, et al. Performance analysis and optimization of hybrid multi-effect distillation adsorption desalination system powered with solar thermal energy for high salinity sea water[J]. Energy, 2021, 215: 119212. |
46 | 满曰南, 王晓娟, 王银涛, 等. 海水淡化技术研究新进展和发展趋势[J]. 工业水处理, 2014, 34(11): 8-12. |
MAN Yuenan, WANG Xiaojuan, WANG Yintao, et al. New search progress and development trend of seawater desalinization technology[J]. Industrial Water Treatment, 2014, 34(11): 8-12. | |
47 | 倪国强, 解田, 胡宏, 等. 反渗透技术在水处理中的应用进展[J]. 化工技术与开发, 2012, 41(10): 23-27. |
NI Guoqiang, XIE Tian, HU Hong, et al. Application of reverse osmosis technology in water treatment[J]. Technology & Development of Chemical Industry, 2012, 41(10): 23-27. | |
48 | 朱鹏飞, 郭磊磊, 尧兢, 等. 以生物质为燃料的SOFC和发动机热电联供系统:参数分析和性能优化[J]. 化工学报, 2021, 72(2): 1089-1099. |
ZHU Pengfei, GUO Leilei, YAO Jing, et al. Parameter analysis and optimization of power and heat cogeneration system with biomass fueled SOFC and engine[J]. CIESC Journal, 2021, 72(2): 1089-1099. | |
49 | PERNA A, MINUTILLO M, JANNELLI E, et al. Performance assessment of a hybrid SOFC/MGT cogeneration power plant fed by syngas from a biomass down-draft gasifier[J]. Applied Energy, 2018, 227: 80-91. |
50 | HUANG Wenge, WANG Jiangfeng, LU Zhijian, et al. Exergoeconomic and exergoenvironmental analysis of a combined heating and power system driven by geothermal source[J]. Energy Conversion and Management, 2020, 211: 112765. |
51 | BUDAK Y, DEVRIM Y. Evaluation of hybrid solar-wind-hydrogen energy system based on methanol electrolyzer[J]. International Journal of Energy Research, 2020, 44(13): 10222-10237. |
52 | HABIBOLLAHZADE A, GHOLAMIAN E, AHMADI P, et al. Multi-criteria optimization of an integrated energy system with thermoelectric generator, parabolic trough solar collector and electrolysis for hydrogen production[J]. International Journal of Hydrogen Energy, 2018, 43(31): 14140-14157. |
53 | BORUNDA M, JARAMILLO O A, DORANTES R, et al. Organic Rankine Cycle coupling with a Parabolic Trough Solar Power Plant for cogeneration and industrial processes[J]. Renewable Energy, 2016, 86: 651-663. |
54 | 樊瑛, 龙惟定. 生物质热电联产发展现状[J]. 建筑科学, 2009, 25(12): 1-6, 38. |
FAN Ying, LONG Weiding. Development status of biomass combined heat and power generation[J]. Building Science, 2009, 25(12): 1-6, 38. | |
55 | VAN ERDEWEGHE S, VAN BAEL J, LAENEN B, et al. Optimal combined heat-and-power plant for a low-temperature geothermal source[J]. Energy, 2018, 150: 396-409. |
56 | GHORBANI B, SHIRMOHAMMADI R, MEHRPOOYA M. Development of an innovative cogeneration system for fresh water and power production by renewable energy using thermal energy storage system[J]. Sustainable Energy Technologies and Assessments, 2020, 37: 100572. |
57 | GHORBANI B, EBRAHIMI A, MORADI M, et al. Energy, exergy and sensitivity analyses of a novel hybrid structure for generation of bio-liquefied natural gas, desalinated water and power using solar photovoltaic and geothermal source[J]. Energy Conversion and Management, 2020, 222: 113215. |
58 | KARAPEKMEZ A, DINCER I. Thermodynamic analysis of a novel solar and geothermal based combined energy system for hydrogen production[J]. International Journal of Hydrogen Energy, 2020, 45(9): 5608-5628. |
59 | MADLENER R, SCHMID C. Combined heat and power generation in liberalised markets and a carbon-constrained world[J]. GAIA: Ecological Perspectives for Science and Society, 2003, 12(2): 114-120. |
60 | RONG Aiying, LAHDELMA R. Role of polygeneration in sustainable energy system development challenges and opportunities from optimization viewpoints[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 363-372. |
61 | BAZMI A A, ZAHEDI G. Sustainable energy systems: Role of optimization modeling techniques in power generation and supply — A review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(8): 3480-3500. |
62 | CENTI G, IAQUANIELLO G, PERATHONER S. Chemical engineering role in the use of renewable energy and alternative carbon sources in chemical production[J]. BMC Chemical Engineering, 2019, 1: 5. |
[1] | 杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32. |
[2] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[3] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[4] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[5] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[6] | 薛凯, 王帅, 马金鹏, 胡晓阳, 种道彤, 王进仕, 严俊杰. 工业园区分布式综合能源系统的规划与调度[J]. 化工进展, 2023, 42(7): 3510-3519. |
[7] | 周龙大, 赵立新, 徐保蕊, 张爽, 刘琳. 电场-旋流耦合强化多相介质分离研究进展[J]. 化工进展, 2023, 42(7): 3443-3456. |
[8] | 李蓝宇, 黄新烨, 王笑楠, 邱彤. 化工科研范式智能化转型的思考与展望[J]. 化工进展, 2023, 42(7): 3325-3330. |
[9] | 顾诗亚, 董亚超, 刘琳琳, 张磊, 庄钰, 都健. 考虑中间节点的碳捕集管路系统设计与优化[J]. 化工进展, 2023, 42(6): 2799-2808. |
[10] | 李雪, 王艳君, 王玉超, 陶胜洋. 仿生表面用于雾水收集的最新研究进展[J]. 化工进展, 2023, 42(5): 2486-2503. |
[11] | 邹银才, 李清国, 吴辉, 钟小兵, 陈咸志. 弹载相变热沉传热仿真与优化[J]. 化工进展, 2023, 42(3): 1248-1256. |
[12] | 孙潇, 朱光涛, 裴爱国. 氢液化装置产业化与研究进展[J]. 化工进展, 2023, 42(3): 1103-1117. |
[13] | 张巍, 王锐, 缪平, 田戈. 全球可再生能源电转甲烷的应用[J]. 化工进展, 2023, 42(3): 1257-1269. |
[14] | 曾思颖, 杨敏博, 冯霄. 基于机器学习的煤层气组成预测及液化过程的实时优化[J]. 化工进展, 2023, 42(10): 5059-5066. |
[15] | 王子宗, 索寒生, 赵学良, 闫雅琨. 数字孪生智能乙烯工厂工业互联网平台的设计与构建[J]. 化工进展, 2023, 42(10): 5029-5036. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |