1 |
DAI Liheng, HUANG Kang, XIA Yongsheng, et al. Two-dimensional material separation membranes for renewable energy purification, storage, and conversion[J]. Green Energy & Environment, 2021, 6(2): 193-211.
|
2 |
DAI Qing, ZHAO Ziming, SHI Mengqi, et al. Ion conductive membranes for flow batteries: design and ions transport mechanism[J]. Journal of Membrane Science, 2021, 632: 119355.
|
3 |
DONG Junhang, XU Zhi, YANG Shaowei, et al. Zeolite membranes for ion separations from aqueous solutions[J]. Current Opinion in Chemical Engineering, 2015, 8: 15-20.
|
4 |
YANG Ruidong, XU Zhi, YANG Shaowei, et al. Nonionic zeolite membrane as potential ion separator in redox-flow battery[J]. Journal of Membrane Science, 2014, 450: 12-17.
|
5 |
XU Zhi, MICHOS I, WANG Xuerui, et al. A zeolite ion exchange membrane for redox flow batteries[J]. Chemical Communications, 2014, 50(19): 2416.
|
6 |
GUO Yi, JIANG Zhongqing, YING Wen, et al. A DNA-threaded ZIF-8 membrane with high proton conductivity and low methanol permeability[J]. Advanced Materials, 2018, 30(2): 1705155.
|
7 |
XU Zhi, MICHOS I, CAO Zishu, et al. Proton-selective ion transport in ZSM-5 zeolite membrane[J]. The Journal of Physical Chemistry C, 2016, 120(46): 26386-26392.
|
8 |
HUANG Kang, WANG Bo, GUO Song, et al. Micropatterned ultrathin MOF membranes with enhanced molecular sieving property[J]. Angewandte Chemie, 2018, 130(42): 14088-1409.
|
9 |
QIAN Qihui, ASINGER P A, LEE M J, et al. MOF-based membranes for gas separations[J]. Chemical Reviews, 2020, 120(16): 8161-8266.
|
10 |
WU Jine, DAI Qing, ZHANG Huamin, et al. A defect-free MOF composite membrane prepared via in-situ binder-controlled restrained second-growth method for energy storage device[J]. Energy Storage Materials, 2021, 35: 687-694.
|
11 |
LEE W, PARK D, PARK G, et al. Effect of pore adjustable hydrophilic nickel coated polyethylene membrane on the performance of aqueous naphthoquinone based redox flow batteries[J]. Chemical Engineering Journal, 2021, 408: 127320.
|
12 |
李凯敏, 丁伟, 陈庆, 等. PES/Nafion复合膜的制备及其在全钒液流电池中的应用[J]. 辽宁化工, 2017, 46(6): 531-533.
|
|
LI Kaimin, DING Wei, CHEN Qing, et al. Preparation of PES/nafion composite membrane and its application in all-vanadium redox flow batteries[J]. Liaoning Chemical Industry, 2017, 46(6):531-533.
|
13 |
SHIN M, SONG W-J, SON H B, et al. Highly stretchable separator membrane for deformable energy-storage devices[J]. Advanced Energy Materials, 2018, 8(23): 1801025.
|
14 |
SHI Mengqi, DAI Qing, LI Fan, et al. Membranes with well-defined selective layer regulated by controlled solvent diffusion for high power density flow battery[J]. Advanced Energy Materials, 2020, 10(34): 2001382.
|
15 |
WU Jin’e, YUAN Chenguang, LI Tianyu, et al. Dendrite-free zinc-based battery with high areal capacity via the region-induced deposition effect of turing membrane[J]. Journal of the American Chemical Society, 2021, 143(33): 13135-13144.
|
16 |
CHAE I S, LUO Tao, MOON G H, et al. Ultra-high proton/vanadium selectivity for hydrophobic polymer membranes with intrinsic nanopores for redox flow battery[J]. Advanced Energy Materials, 2016, 6(16): 1600517.
|
17 |
CAO Li, WU Hong, CAO Yu, et al. Weakly humidity-dependent proton-conducting COF membranes[J]. Advanced Materials, 2020, 32(52): 2005565.
|
18 |
TAN Rui, WANG Anqi, MALPASS-EVANS R, et al. Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage[J]. Nature Materials, 2020, 19(2): 195-202.
|
19 |
ZUO Peipei, LI Yuanyuan, WANG Anqi, et al. Sulfonated microporous polymer membranes with fast and selective ion transport for electrochemical energy conversion and storage[J]. Angewandte Chemie International Edition, 2020, 59(24): 9564-9573.
|
20 |
YANG Yi, HE Xueyi, ZHANG Penghui, et al. Combined intrinsic and extrinsic proton conduction in robust covalent organic frameworks for hydrogen fuel cell applications[J]. Angewandte Chemie International Edition, 2020, 59(9): 3678-3684.
|
21 |
LEE W, JUNG M, SERHIICHUK D, et al. Layered composite membranes based on porous PVDF coated with a thin, dense PBI layer for vanadium redox flow batteries[J]. Journal of Membrane Science, 2019, 591: 117333.
|
22 |
DAI Qing, LIU Zhiqiang, HUANG Ling, et al. Thin-film composite membrane breaking the trade-off between conductivity and selectivity for a flow battery[J]. Nature Communications, 2020, 11: 13.
|
23 |
HU Jing, YUAN Chenguang, ZHI Liping, et al. In situ defect-free vertically aligned layered double hydroxide composite membrane for high areal capacity and long-cycle zinc-based flow battery[J]. Advanced Functional Materials, 2021, 31: 2102167.
|
24 |
ZHANG Dezhu, XIN Li, XIA Yongsheng, et al. Advanced Nafion hybrid membranes with fast proton transport channels toward high-performance vanadium redox flow battery[J]. Journal of Membrane Science, 2021, 624: 119047.
|
25 |
XIN Li, ZHANG Dezhu, QU Kai, et al. Zr-MOF-enabled controllable ion sieving and proton conductivity in flow battery membrane[J]. Advanced Functional Materials, 2021, 31(42): 2104629.
|
26 |
AHN Y, KIM D. Ultra-low vanadium ion permeable electrolyte membrane for vanadium redox flow battery by pore filling of PTFE substrate[J]. Energy Storage Materials, 2020, 31: 105-114.
|
27 |
MÖGELIN H, YAO G, ZHONG H, et al. Porous glass membranes for vanadium redox-flow battery application-effect of pore size on the performance[J]. Journal of Power Sources, 2018, 377: 18-25.
|
28 |
ZHAO Yuyue, LI Mingrun, YUAN Zhizhang, et al. Advanced charged sponge-like membrane with ultrahigh stability and selectivity for vanadium flow batteries[J]. Advanced Functional Materials, 2016, 26(2): 210-218.
|
29 |
LAI Yiming, WAN Lei WANG Baoguo. PVDF/graphene composite nanoporous membranes for vanadium flow batteries[J]. Membranes, 2019, 9(7): 89.
|
30 |
ZHOU Xinjie, XUE Rui, ZHONG Yuguang, et al. Asymmetric porous membranes with ultra-high ion selectivity for vanadium redox flow batteries[J]. Journal of Membrane Science, 2020, 595: 117614.
|
31 |
YUAN Zhizhang, DUAN Yinqi, ZHANG Hongzhang, et al. Advanced porous membranes with ultra-high selectivity and stability for vanadium flow batteries[J]. Energy & Environmental Science, 2016, 9(2): 441-447.
|
32 |
青格勒图, 郭伟男, 刘平, 等. 全钒液流电池的隔膜研究与应用[J]. 电化学, 2015, 21(5): 449-454.
|
|
QINGGE Letu, GUO Weinan, LIU Ping, et al. Development of proton conduction membranes in application of vanadium flow battery[J]. Journal of Electrochemistry, 2015, 21(5): 449-454.
|
33 |
KIM R, YUK S, LEE J H, et al. Scaling the water cluster size of nafion membranes for a high performance Zn/Br redox flow battery[J]. Journal of Membrane Science, 2018, 564: 852-858.
|
34 |
YUAN Zhizhang, LIU Xiaoqi, XU Wenbin, et al. Negatively charged nanoporous membrane for a dendrite-free alkaline zinc-based flow battery with long cycle life[J]. Nature Communications, 2018, 9: 3731.
|
35 |
HU Jing, YUE Meng, ZHANG Huamin, et al. A boron nitride nanosheets composite membrane for a long-life zinc-based flow battery[J]. Angewandte Chemie International Edition, 2020, 59(17): 6715-6719.
|
36 |
MA Ting, PAN Zeng, MIAO Licheng, et al. Porphyrin-based symmetric redox-flow battery towards cold-climate energy storage[J].Angewandte Chemie International Edition, 2018, 57(12): 3158-3162.
|
37 |
HU Jing, TANG Xiaomin, DAI Qing, et al. Layered double hydroxide membrane with high hydroxide conductivity and ion selectivity for energy storage device[J]. Nature Communications, 2021, 12: 3409.
|
38 |
夏力行, 刘昊, 刘琳, 等. 有机氧化还原液流电池的研究进展[J]. 电化学, 2018, 24(5): 466-487.
|
|
XIA Lixing, LIU Hao, LIU lin, et al. Recent progresses in organic redox flow batteries[J]. Journal of Electrochemistry, 2018, 24(5): 466-487.
|
39 |
罗惠玲, 邵诸锋, 王树博, 等. 多孔有机笼在聚丙烯腈纳米纤维表面固载及其复合质子交换膜[J]. 化工进展, 2021, 40(7): 3854-3861.
|
|
LUO Huiling, SHAO Zhufeng, WANG Shubo, et al. Preparation and performance of CC3 immobilized PAN nanofibers and its modified Nafion hybrid proton exchange membrane[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3854-3861.
|
40 |
梁茜, 王诚, 雷一杰, 等. 金属有机框架材料在质子交换膜燃料电池中的潜在应用[J]. 化学进展, 2018, 30(11): 1770-1783.
|
|
LIANG Xi, WANG Cheng, LEI Yijie, et al. Potential applications of metal organic framework-based materials for proton exchange membrane fuel cells[J]. Progress in Chemistry, 2018, 30(11): 1770-1783.
|
41 |
GENG Kang, TANG Hongying, JU Qing, et al. Symmetric sponge-like porous polybenzimidazole membrane for high temperature proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2021, 620: 118981.
|
42 |
CHEN Dongju, YU Shanshan, LIU Xue, et al. Porous polybenzimidazole membranes with excellent chemical stability and ion conductivity for direct borohydride fuel cells[J]. Journal of Power Sources, 2015, 282: 323-327.
|
43 |
SONG Jianjun, SU Dawei, XIE Xiuqiang, et al. Immobilizing polysulfides with MXene-functionalized separators for stable lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(43): 29427-29433.
|
44 |
HUSSAIN A, LUO Yang, LI Tianyu, et al. Stop four gaps with one bush: versatile hierarchical polybenzimidazole nanoporous membrane for highly durable Li-S battery[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 55809-55819.
|
45 |
XU Jie, AN Shuhao, SONG Xianyu, et al. Towards high performance Li-S batteries via sulfonate-rich COF-modified separator[J]. Advanced Materials, 2021: 2105178.
|