化工进展 ›› 2022, Vol. 41 ›› Issue (2): 721-729.DOI: 10.16085/j.issn.1000-6613.2021-0711
收稿日期:
2021-04-07
修回日期:
2021-05-13
出版日期:
2022-02-05
发布日期:
2022-02-23
通讯作者:
苑鹏,沈伯雄
作者简介:
马颢菲(1998—),女,硕士研究生,研究方向为大气污染控制。E-mail:基金资助:
MA Haofei1(), YUAN Peng2(), SHEN Boxiong2()
Received:
2021-04-07
Revised:
2021-05-13
Online:
2022-02-05
Published:
2022-02-23
Contact:
YUAN Peng,SHEN Boxiong
摘要:
近年来,开发宽光谱响应、高吸附性能和强催化活性的钙钛矿型催化剂用于气态污染物的光催化脱除受到广泛关注。本文全面梳理了钙钛矿型光催化剂的制备和改性方法,并对其光催化脱除典型气态污染物的反应机理、研究现状及未来研究方向进行了系统归纳和评述。文中指出:柠檬酸络合法制备所得钙钛矿型光催化剂具有粒径小和光催化活性高的特点,经离子掺杂或复合改性后可进一步提升其可见光响应能力。该类催化剂在光催化脱除烟气中的NO、Hg0和挥发性有机化合物(VOCs)方面表现出较高的催化反应性,其协同催化氧化Hg0和NO的可行性也得以初步的理论论证。此外,含钛高炉渣衍生的钙钛矿型光催化剂在气态污染物净化方面表现出良好的应用前景。然而,钙钛矿型光催化剂用于气态多污染物协同脱除及含钛高炉渣中钙钛矿型组分的富集等方面的研究有待进一步深化。本文以期为钙钛矿型光催化剂的优化制备及气态污染物光催化脱除效率的提升提供参考。
中图分类号:
马颢菲, 苑鹏, 沈伯雄. 钙钛矿型光催化剂的制备及脱除典型气态污染物的研究进展[J]. 化工进展, 2022, 41(2): 721-729.
MA Haofei, YUAN Peng, SHEN Boxiong. Research progress of preparation and utilization of perovskite-type photocatalyst in romoval of typical gaseous pollutants[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 721-729.
1 | XIE A J, ZHOU X M, HUANG X Y, et al. Cerium-loaded MnOx/attapulgite catalyst for the low-temperature NH3-selective catalytic reduction[J]. Journal of Industrial and Engineering Chemistry, 2017, 49: 230-241. |
2 | ABBAS N, HUSSAIN M, RUSSO N, et al. Studies on the activity and deactivation of novel optimized TiO2 nanoparticles for the abatement of VOCs[J]. Chemical Engineering Journal, 2011, 175: 330-340. |
3 | 杨景瑞, 王莹, 陈虎, 等. 烟气中NOx脱除技术的研究进展[J]. 化工环保, 2020, 40(5): 461-466. |
YANG J R, WANG Y, CHEN H, et al. Research progresses on NOx removal from flue gas[J]. Environmental Protection of Chemical Industry, 2020, 40(5): 461-466. | |
4 | 杜如鹏. 臭氧注入-活性炭吸附联用工艺脱除燃煤烟气中SO2、NO和Hg0的小试化研究[D]. 厦门: 厦门大学, 2019. |
DU R P. Small-scale experiment study on removal of SO2, NO and Hg0 from coal-fired flue gas by ozone injection-activated carbon adsorption combined process[D]. Xiamen: Xiamen University, 2019. | |
5 | KONG J J, YANG T, RUI Z B, et al. Perovskite-based photocatalysts for organic contaminants removal: current status and future perspectives[J]. Catalysis Today, 2019, 327: 47-63. |
6 | UYGUNER-DEMIREL C S, BIRBEN N C, BEKBOLET M. Elucidation of background organic matter matrix effect on photocatalytic treatment of contaminants using TiO2: a review[J]. Catalysis Today, 2017, 284: 202-214. |
7 | 冯彦梅. 钙钛矿型铌/钛酸盐复合光催化剂的制备、性能及机理研究[D]. 太原: 中北大学, 2019. |
FENG Y M. Study on preparation, photocatalytic properties and mechanism of niobium/titanate composite photocatalysts[D]. Taiyuan: North University of China, 2019. | |
8 | 王建强. 钙钛矿型钽(铌)酸盐纳米光催化剂的制备及性能研究[D]. 北京: 北京理工大学, 2015. |
WANG J Q. Synthesis and property study of perovskite-type tantalite and niobate nano-sized photocatalysts[D]. Beijing: Beijing Institute of Technology, 2015. | |
9 | 黄浩, 赵韦人, 李杨, 等. 金属卤化物钙钛矿光催化材料研究进展[J]. 发光学报, 2020, 41(9): 1058-1081. |
HUANG H, ZHAO W R, LI Y, et al. Research advances of metal halide perovskites for photocatalysis[J]. Chinese Journal of Luminescence, 2020, 41(9): 1058-1081. | |
10 | 高永华. 钙钛矿型复合氧化物催化剂的制备及其在环境催化中的应用[D]. 太原: 太原理工大学, 2017. |
GAO Y H. Synthesis of perovskite-type composite oxide catalyst and its application in environmental catalysis[D]. Taiyuan: Taiyuan University of Technology, 2017. | |
11 | 张欣. La-Mn钙钛矿催化剂同时催化去除NOx和碳烟的研究[D]. 哈尔滨: 哈尔滨工程大学, 2018. |
ZHANG X. Research on simultaneous catalytic removal of NOx and soot by La-Mn perovskite catalyst[D]. Harbin: Harbin Engineering University, 2018. | |
12 | 李红花, 汪浩, 严辉. ABO3钙钛矿型复合氧化物光催化剂设计评述[J]. 化工进展, 2006, 25(11): 1309-1313. |
LI Honghua, WANG Hao, YAN Hui. Review of designing ABO3 pervoskite photocatalysis[J]. Chemical Industry and Enginering Progress, 2006, 25(11): 1309-1313. | |
13 | 谭廷文. 金属掺杂镧钴钙钛矿催化剂制备及去除NO与PM研究[D]. 广州: 广州大学, 2018. |
TANG T W. The study of preparation of metal doped LaCoO3 perovskite catalysts for simultaneous removal NO and PM[D]. Guangzhou: Guangzhou University, 2018. | |
14 | 陈璐, 俞小花, 谢刚, 等. 模板法制备钙钛矿型复合氧化物催化剂的研究进展[J]. 中国稀土学报, 2021, 39(4): 531-542. |
CHEN L, YU X H, XIE G, et al. Research progress in preparation of perovskite-type composite oxide catalyst by template method[J]. Chineserare Earth Journal, 2021, 39(4): 531-542. | |
15 | 雍志清. g-C3N4/ABO3复合材料的制备及光催化性能研究[D]. 天津: 天津大学, 2014. |
YONG Z Q. g-C3N4/ABO3 nanocomposites: preparation and photocatalytic activities[D]. Tianjin: Tianjin University, 2014. | |
16 | 陈宸. 改性钙钛矿型光催化剂去除水体中有机污染物的研究[D]. 北京: 中央民族大学, 2020. |
CHEN C. Study on removal of organic pollutants in water by modified perovskite photocatalyst[D]. Beijing: Central University for Nationalities, 2020. | |
17 | HADJARAB B, BOUGUELIA A, TRARI M. Optical and transport properties of lanthanum-doped stannate BaSnO3[J]. Journal of Physics D: Applied Physics, 2007, 40(19): 5833-5839. |
18 | IRIE H, MARUYAMA Y, HASHIMOTO K. Ag+- and Pb2+-doped SrTiO3 photocatalysts. A correlation between band structure and photocatalytic activity[J]. The Journal of Physical Chemistry C, 2007, 111(4): 1847-1852. |
19 | 陈国强. A3B2X9型非铅基钙钛矿材料的光催化应用研究[D]. 济南: 山东大学, 2020. |
CHEN G Q. Investigation on the photocatalytic application of lead-free perovskite materials of A3B2X9[D]. Jinan: Shandong University, 2020. | |
20 | 唐利娜. 石墨相氮化碳光催化和镧铁钙钛矿电催化分解水的性能研究[D]. 昌吉: 昌吉学院, 2020. |
TANG L N. Study on the water splitting via photocatalysis using graphite phase carbon nitride and electrocatalysis using lanthanum iron perovskite materials[D]. Changji: Changji University, 2020. | |
21 | 汪哲铖. YFe1-xCrxO3的合成及磁性、光催化性能研究[D]. 淮南: 安徽理工大学, 2019. |
WANG Z C. Study on synthesis, magnetic and photocatalytic properties of YFe1-xCrxO3[D]. Huainan: Anhui University of Science & Technology, 2019. | |
22 | BORSE P H, LEE J S, KIM H G. Theoretical band energetics of Ba(M0.5Sn0.5)O3 for solar photoactive applications[J]. Journal of Applied Physics, 2006, 100(12): 124915. |
23 | 郭少红. 卤素钙钛矿和金属有机框架的制备及其CO2光催化还原性能研究[D]. 长春: 吉林大学, 2020. |
GUO S H. Preparation of halide perovskites and metal organic frameworks for studying their photocatalytic CO2 reduction performance[D]. Changchun: Jilin University, 2020. | |
24 | JI S M, BORSE P H, KIM H G GYU, et al. Photocatalytic hydrogen production from water-methanol mixtures using N-doped Sr2Nb2O7 under visible light irradiation: effects of catalyst structure[J]. Physical Chemistry Chemical Physics, 2005, 7(6): 1315-1321. |
25 | ALAMMAR T, HAMM I, WARK M, et al. Low-temperature route to metal titanate perovskite nanoparticles for photocatalytic applications[J]. Applied Catalysis B: Environmental, 2015, 178: 20-28. |
26 | UEDA K, KATO H, KOBAYASHI M, et al. Control of valence band potential and photocatalytic properties of NaxLa1-xTaO1+2xN2-2x oxynitride solid solutions[J]. Journal of Materials Chemistry A, 2013, 1(11): 3667. |
27 | SU Y, WANG S, MENG Y, et al. Dual substitutions of single dopant Cr3+ in perovskite NaTaO3: synthesis, structure, and photocatalytic performance[J]. RSC Advances, 2012, 2(33): 12932. |
28 | GARCÍA-LÓPEZ E, MARCÌ G, PULEO F, et al. La1-xSrxCo1-yFeyO3-δ perovskites: preparation, characterization and solar photocatalytic activity[J]. Applied Catalysis B: Environmental, 2015, 178: 218-225. |
29 | WANG D F, KAKO T, YE J H. Efficient photocatalytic decomposition of acetaldehyde over a solid-solution perovskite (Ag0.75Sr0.25)(Nb0.75Ti0.25)O3 under visible-light irradiation[J]. Journal of the American Chemical Society, 2008, 130(9): 2724-2725. |
30 | COMES R B, SUSHKO P V, HEALD S M, et al. Band-gap reduction and dopant interaction in epitaxial La, Cr co-doped SrTiO3 thin films[J]. Chemistry of Materials, 2014, 26(24): 7073-7082. |
31 | SUN X M, WU J, TIAN F G, et al. Synergistic effect of surface defect and interface heterostructure on TiO2/BiOIO3 photocatalytic oxide gas-phase mercury[J]. Materials Research Bulletin, 2018, 103: 247-258. |
32 | PAN C S, XU J, WANG Y J, et al. Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly[J]. Advanced Functional Materials, 2012, 22(7): 1518-1524. |
33 | KUBACKA A, FERNÁNDEZ-GARCÍA M, COLÓN G. Advanced nanoarchitectures for solar photocatalytic applications[J]. Chemical Reviews, 2012, 112(3): 1555-1614. |
34 | 张仁杰. Bi4Ti3O12基可见光催化剂的制备与光催化性能研究[D]. 青岛: 青岛大学, 2020. |
ZHANG R J. Preparation and photocatalytic performance of Bi4Ti3O12 based visible light photocatalyst[D]. Qingdao: Qingdao University, 2020. | |
35 | ZHANG D D, QI J J, JI H D, et al. Photocatalytic degradation of ofloxacin by perovskite-type NaNbO3 nanorods modified g-C3N4 heterojunction under simulated solar light: theoretical calculation, ofloxacin degradation pathways and toxicity evolution[J]. Chemical Engineering Journal, 2020, 400: 125918. |
36 | CHEN W, HU Y, BA M W. Surface interaction between cubic phase NaNbO3 nanoflowers and Ru nanoparticles for enhancing visible-light driven photosensitized photocatalysis[J]. Applied Surface Science, 2018, 435: 483-493. |
37 | LI X Z, SHI H Y, WANG T S, et al. Photocatalytic removal of NO by Z-scheme mineral based heterojunction intermediated by carbon quantum dots[J]. Applied Surface Science, 2018, 456: 835-844. |
38 | ZHANG Q, HUANG Y, PENG S Q, et al. Perovskite LaFeO3-SrTiO3 composite for synergistically enhanced NO removal under visible light excitation[J]. Applied Catalysis B: Environmental, 2017, 204: 346-357. |
39 | ZHANG Z L, LYU H, LI X Z, et al. Conversion of CaTi1-xMnxO3-δ-based photocatalyst for photocatalytic reduction of NO via structure-reforming of Ti-bearing blast furnace slag[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12): 10299-10309. |
40 | 肖娟, 张浩力. 新型有机-无机杂化钙钛矿发光材料的研究进展[J]. 物理化学学报, 2016, 32(8): 1894-1912. |
XIOA J, ZHANG H L. Recent progress in organic-inorganic hybrid perovskite materials for luminescence applications[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 1894-1912. | |
41 | ZHANG Y L, ZHAO Y C, XIONG Z, et al. Elemental mercury removal by I--doped Bi2WO6 with remarkable visible-light-driven photocatalytic oxidation[J]. Applied Catalysis B: Environmental, 2021, 282: 119534. |
42 | ARDIZZONE S, BIANCHI C L, CAPPELLETTI G, et al. Photocatalytic degradation of toluene in the gas phase: relationship between surface species and catalyst features[J]. Environmental Science & Technology, 2008, 42(17): 6671-6676. |
43 | AO C H, LEE S C, YU J Z, et al. Photodegradation of formaldehyde by photocatalyst TiO2: effects on the presences of NO, SO2 and VOCs[J]. Applied Catalysis B: Environmental, 2004, 54(1): 41-50. |
44 | 李佳芮. 宽带隙半导体光催化降解VOCs的增强性能及反应机理研究[D]. 重庆: 重庆工商大学, 2020. |
LI J R. Photocatalytic VOCs oxidation enhancement performance and reaction mechnism of wide bandgap semiconductor photocatalysts[D]. Chongqing: Chongqing Technology and Business University, 2020. | |
45 | LEE Y E, CHUNG W C, CHANG M B. Photocatalytic oxidation of toluene and isopropanol by LaFeO3/black-TiO2[J]. Environmental Science and Pollution Research, 2019, 26(20): 20908-20919. |
46 | CHEN J Y, HE Z G, LI G Y, et al. Visible-light-enhanced photothermocatalytic activity of ABO3-type perovskites for the decontamination of gaseous styrene[J]. Applied Catalysis B: Environmental, 2017, 209: 146-154. |
47 | ZHOU P Y, ZHANG A C, ZHANG D, et al. Efficient removal of Hg0 from simulated flue gas by novel magnetic Ag2WO4/BiOI/CoFe2O4 photocatalysts[J]. Chemical Engineering Journal, 2019, 373: 780-791. |
48 | 敖冉, 马丽萍, 王立春, 等. 钙钛矿协同催化氧化烟气中Hg0和NO的研究进展[J]. 环境工程, 2019, 37(S1): 562-567. |
AO R, MA L P, WANG L C, et al. Research progress for synergetic catalytic oxidation removal of Hg0 and NO over perovskite in flue gas[J]. Environmental Engineering, 2019, 37(S1): 562-567. | |
49 | AO C H, LEE S C, ZOU S C, et al. Inhibition effect of SO2 on NOx and VOCs during the photodegradation of synchronous indoor air pollutants at parts per billion(ppb) level by TiO2[J]. Applied Catalysis B: Environmental, 2004, 49(3): 187-193. |
50 | LIN F W, SHAO J M, TANG H R, et al. Enhancement of NO oxidation activity and SO2 resistance over LaMnO3+δ perovskites catalysts with metal substitution and acid treatment[J]. Applied Surface Science, 2019, 479: 234-246. |
51 | HODJATI S, PETIT C, PITCHON V, et al. Absorption/desorption of NOx process on perovskites: impact of SO2 on the storage capacity of BaSnO3 and strategy to develop thioresistance[J]. Applied Catalysis B: Environmental, 2001, 30(3/4): 247-257. |
52 | ZHANG-STEENWINKEL Y, CASTRICUM H L, BECKERS J, et al. Dielectric heating effects on the activity and SO2 resistance of La0.8Ce0.2MnO3 perovskite for methane oxidation[J]. Journal of Catalysis, 2004, 221(2): 523-531. |
53 | XIAN H, LI F L, LI X G, et al. Influence of preparation conditions to structure property, NOx and SO2 sorption behavior of the BaFeO3-x perovskite catalyst[J]. Fuel Processing Technology, 2011, 92(9): 1718-1724. |
54 | XIA D H, HU L L, HE C, et al. Simultaneous photocatalytic elimination of gaseous NO and SO2 in a BiOI/Al2O3-padded trickling scrubber under visible light[J]. Chemical Engineering Journal, 2015, 279: 929-938. |
55 | LIU Y, NING P, LI K, et al. Simultaneous removal of NOx and SO2 by low-temperature selective catalytic reduction over modified activated carbon catalysts[J]. Russian Journal of Physical Chemistry A, 2017, 91(3): 490-499. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[6] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[7] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[8] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[9] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[10] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[11] | 朱杰, 金晶, 丁正浩, 杨会盼, 侯封校. 化学链气化中准东煤灰对CaSO4载氧体改性及其作用机理[J]. 化工进展, 2023, 42(9): 4628-4635. |
[12] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[13] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[14] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[15] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |