1 |
曹立业, 侯晓爽. 城镇污水处理厂剩余污泥资源化处置途径分析[J]. 中国资源综合利用, 2020, 38(9): 126-128.
|
|
CAO Liye, HOU Xiaoshuang. Analysis on resource disposal approach of surplus sludge in urban sewage treatment plant[J]. China Resources Comprehensive Utilization, 2020, 38(9): 126-128.
|
2 |
YASUI H, SHIBATA M. An innovative approach to reduce excess sludge production in the activated sludge process[J]. Water Science and Technology, 1994, 30(9): 11-20.
|
3 |
FALL C, SILVA-HERNÁNDEZ B C, HOOIJMANS C M, et al. Sludge reduction by ozone: Insights and modeling of the dose-response effects[J]. Journal of Environmental Management, 2018, 206: 103-112.
|
4 |
王海燕, 鲁智礼, 庞朝辉, 等. 原位臭氧氧化污泥减量工艺的运行效能[J]. 环境工程学报, 2012, 6(3): 779-786.
|
|
WANG Haiyan, LU Zhili, PANG Zhaohui, et al. Performance of in situ ozonation sludge reduction process[J]. Chinese Journal of Environmental Engineering, 2012, 6(3): 779-786.
|
5 |
YAN S T, ZHENG H, LI A, et al. Systematic analysis of biochemical performance and the microbial community of an activated sludge process using ozone-treated sludge for sludge reduction[J]. Bioresource Technology, 2009, 100(21): 5002-5009.
|
6 |
QIANG Z M, WANG L, DONG H Y, et al. Operation performance of an A/A/O process coupled with excess sludge ozonation and phosphorus recovery: a pilot-scale study[J]. Chemical Engineering Journal, 2015, 268: 162-169.
|
7 |
薛冰, 刘宾寒, 韦婷婷, 等. 基于臭氧旁路处理的污泥原位减量技术工艺[J]. 环境科学, 2021, 42(5): 2402-2412.
|
|
XUE Bing, LIU Binhan, WEI Tingting, et al. In-situ sludge reduction technology based on ozonation[J]. Environmental Science, 2021, 42(5): 2402-2412.
|
8 |
LI H Y, QU J H, ZHAO X, et al. Removal of alachlor from water by catalyzed ozonation in the presence of Fe2+, Mn2+, and humic substances[J]. Journal of Environmental Science and Health B: Pesticides, Food Contaminants, and Agricultural Wastes, 2004, 39(5/6): 791-803.
|
9 |
SONG Y Q, ZHAO C, WANG T, et al. Simultaneously promoted reactive manganese species and hydroxyl radical generation by electro-permanganate with low additive ozone[J]. Water Research, 2021, 189: 116623.
|
10 |
ZHOU Q, WANG Q W, TONG S P. Mn2+/H2O2/O3, a high efficient advanced oxidation process in acidic solution[J]. Journal of Environmental Chemical Engineering, 2017, 5(1): 924-930.
|
11 |
LI Y L, LI D X, LI J B, et al. Pretreatment of cyanided tailings by catalytic ozonation with Mn2+/O3[J]. Journal of Environmental Sciences, 2015, 28: 14-21.
|
12 |
林肯. 均相催化臭氧化处理石化废水二级出水的实验研究[D]. 上海: 华东理工大学, 2020: 32-37.
|
|
LIN Ken. Experimental study on the treatment of secondary effluent of petrochemical wastewater by homogeneous catalytic ozonation[D]. Shanghai: East China University of Science and Technology, 2020: 32-37.
|
13 |
MCGREGOR J, HUANG Z Y, PARROTT E P J, et al. Active coke: carbonaceous materials as catalysts for alkane dehydrogenation[J]. Journal of Catalysis, 2010, 269(2): 329-339.
|
14 |
XIONG W, WANG Z N, HE S L, et al. Nitrogen-doped carbon nanotubes as a highly active metal-free catalyst for nitrobenzene hydrogenation[J]. Applied Catalysis B: Environmental, 2020, 260: 118105.
|
15 |
朱荣淑, 刘贤博, 何永兵, 等. 锰离子催化臭氧氧化气相丁醛[J]. 哈尔滨工业大学学报, 2015, 47(8): 66-70.
|
|
ZHU Rongshu, LIU Xianbo, HE Yongbing, et al. The degradation of gas-phase butyraldehyde by Mn2+ catalytic ozonation[J]. Journal of Harbin Institute of Technology, 2015, 47(8): 66-70.
|
16 |
仝坤. 生物降解-活性焦吸附处理稠油废水研究[D]. 北京: 中国地质大学(北京), 2012.
|
|
TONG Kun. Study on biodegradation-active coke adsorption treatment of heavy oil wastewater[D]. Beijing: China University of Geosciences, 2012.
|
17 |
邹展. 臭氧催化氧化和活性炭吸附在化工园区难降解污水深度处理中的试验研究[D]. 北京: 北京化工大学, 2016.
|
|
ZOU Zhan. Catalytic oxidation of ozone and activated carbon adsorption process deeply treating refractory wastewater from chemical industrial park[D]. Beijing: Beijing University of Chemical Technology, 2016.
|
18 |
LIANG Z W, LI W H, YANG S Y, et al. Extraction and structural characteristics of extracellular polymeric substances (EPS), pellets in autotrophic nitrifying biofilm and activated sludge[J]. Chemosphere, 2010, 81(5): 626-632.
|
19 |
GÜMÜŞ D, AKBAL F. A comparative study of ozonation, iron coated zeolite catalyzed ozonation and granular activated carbon catalyzed ozonation of humic acid[J]. Chemosphere, 2017, 174: 218-231.
|
20 |
HE Y, WANG L J, CHEN Z, et al. Catalytic ozonation for metoprolol and ibuprofen removal over different MnO2 nanocrystals: efficiency, transformation and mechanism[J]. Science of the Total Environment, 2021, 785: 147328.
|
21 |
XIAO K K, ABBT-BRAUN G, HORN H. Changes in the characteristics of dissolved organic matter during sludge treatment: a critical review[J]. Water Research, 2020, 187: 116441.
|
22 |
高雅洁, 郑晓英, 王明阳, 等. Mn(Ⅱ)对好氧颗粒污泥微生物活性的影响[J]. 工业水处理, 2016, 36(9): 55-59.
|
|
GAO Yajie, ZHENG Xiaoying, WANG Mingyang, et al. Influences of Mn(Ⅱ) on the microbial activity of aerobic granular sludge[J]. Industrial Water Treatment, 2016, 36(9): 55-59.
|
23 |
YU G H, HE P J, SHAO L M, et al. Stratification structure of sludge flocs with implications to dewaterability[J]. Environmental Science & Technology, 2008, 42(21): 7944-7949.
|
24 |
何培培, 余光辉, 邵立明, 等. 污泥中蛋白质和多糖的分布对脱水性能的影响[J]. 环境科学, 2008, 29(12): 3457-3461.
|
|
HE Peipei, YU Guanghui, SHAO Liming, et al. Effect of proteins and polysaccharides in sewage sludge on dewaterability[J]. Environmental Science, 2008, 29(12): 3457-3461.
|
25 |
SAKAI Y, FUKASE T, YASUI H, et al. An activated sludge process without excess sludge production[J]. Water Science and Technology, 1997, 36(11): 163-170.
|
26 |
GUO Y, ZHANG Y X, YU G, et al. Revisiting the role of reactive oxygen species for pollutant abatement during catalytic ozonation: the probe approach versus the scavenger approach[J]. Applied Catalysis B: Environmental, 2021, 280: 119418.
|
27 |
WANG J L, CHEN H. Catalytic ozonation for water and wastewater treatment: recent advances and perspective[J]. Science of the Total Environment, 2020, 704: 135249.
|
28 |
NAWROCKI J, KASPRZYK-HORDERN B. The efficiency and mechanisms of catalytic ozonation[J]. Applied Catalysis B: Environmental, 2010, 99(1/2): 27-42.
|
29 |
BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O-) in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886.
|
30 |
刘永泽, 江进, 马军, 等. 臭氧氧化过程中羟基自由基产率测定与分析[J]. 哈尔滨工业大学学报, 2015, 47(2): 9-12.
|
|
LIU Yongze, JIANG Jin, MA Jun, et al. Determination of hydroxyl radical yields in the ozone reactions[J]. Journal of Harbin Institute of Technology, 2015, 47(2): 9-12.
|