化工进展 ›› 2021, Vol. 40 ›› Issue (9): 5088-5096.DOI: 10.16085/j.issn.1000-6613.2021-0394
孔庆强1,2(), 黄显虹1, 王振兵1, 郭晓倩1, 谢莉婧1, 苏方远1, 孙国华1, 陈成猛1()
收稿日期:
2021-03-01
修回日期:
2021-04-13
出版日期:
2021-09-05
发布日期:
2021-09-13
通讯作者:
陈成猛
作者简介:
孔庆强(1988—),男,博士研究生,副研究员,研究方向为石墨烯与多孔炭材料。E-mail:基金资助:
KONG Qingqiang1,2(), HUANG Xianhong1, WANG Zhenbing1, GUO Xiaoqian1, XIE Lijing1, SU Fangyuan1, SUN Guohua1, CHEN Chengmeng1()
Received:
2021-03-01
Revised:
2021-04-13
Online:
2021-09-05
Published:
2021-09-13
Contact:
CHEN Chengmeng
摘要:
超级电容器具有功率密度高、循环寿命长和安全可靠等优点,在电动汽车、轨道交通、新能源、电磁弹射和激光武器等领域已广泛应用。然而,作为超级电容器的关键电极材料——活性炭,始终未实现国产化,一直依赖从日本和韩国进口,极大地制约了国内超级电容器及其下游产业的发展。本文综述了超级电容器用活性炭的理化性能对其电化学性能的影响,介绍了国内外超级电容器用活性炭产业现状,指出了其生产过程中制约产品品质的典型传质和传热等化工问题。文章提出,应在现有活性炭基础上建立全面合理的超级电容器用活性炭指标体系,从而指导其国产化工艺开发。针对其生产工艺和装备开展仿真模拟研究,以解决国产炭材料批次稳定性和一致性的问题,保障超级电容器行业关键材料自主可控。
中图分类号:
孔庆强, 黄显虹, 王振兵, 郭晓倩, 谢莉婧, 苏方远, 孙国华, 陈成猛. 超级电容器用活性炭国产化关键化学与化工问题[J]. 化工进展, 2021, 40(9): 5088-5096.
KONG Qingqiang, HUANG Xianhong, WANG Zhenbing, GUO Xiaoqian, XIE Lijing, SU Fangyuan, SUN Guohua, CHEN Chengmeng. Key chemistry and chemical engineering issues in the localization of active carbon for supercapacitor[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5088-5096.
指标 | 数值 |
---|---|
碳质量分数/% | >99.5 |
表面官能团含量/meq·g-1 | <0.50 |
比表面积/m2·g-1 | >1500 |
电极密度/g·cm-3 | >0.5 |
灰分(质量分数)/% | <0.5 |
金属元素含量/μg·g-1 | <100 |
粒径分布/μm | 5~12 |
比容量/F·g-1 | >120(有机体系) |
表1 双电层电容器用活性炭的指标要求[5]
指标 | 数值 |
---|---|
碳质量分数/% | >99.5 |
表面官能团含量/meq·g-1 | <0.50 |
比表面积/m2·g-1 | >1500 |
电极密度/g·cm-3 | >0.5 |
灰分(质量分数)/% | <0.5 |
金属元素含量/μg·g-1 | <100 |
粒径分布/μm | 5~12 |
比容量/F·g-1 | >120(有机体系) |
厂家 | 型号 | 比表面积 /m2·g-1 | 孔容 /cm3·g-1 | 灰分(质量分数)/% | 铁含量② /μg·g-1 | 碳质量分数②/% | 比电容 | |
---|---|---|---|---|---|---|---|---|
/F·g-1 | /F·cm-3 | |||||||
日本可乐丽公司(Kuraray Chemical)[ | YP50F | 1600 | 0.7 | 0.3 | 25 | 95.99 | 28 | 19 |
YP80F | 2100 | 0.94 | 0.5 | — | — | 32 | 18 | |
韩国PCT公司Power Carbon Technology① | CEP21KSN | 1650~1950 | — | <0.1 | 22 | 96.90 | 36.2 | 17.5 |
CEP21KS | 1850~2150 | — | <0.1 | — | — | 37.5 | 18.1 | |
PCT9 | 1850~2050 | — | <0.1 | — | — | 35.6 | 17.1 | |
美国EnerG2① | AeroVolt | 1725 | 0.70~1.30 | <0.02 | — | — | — | — |
斯里兰卡Haycarb② | — | 1572 | 0.83 | 0.012 | 25 | 97.65 | — | — |
河南大潮炭能② | — | 1919 | 0.89 | 0.239 | 199 | 96.33 | — | — |
福建元力② | — | 1705 | 0.43 | 0.127 | 130 | 94.85 | — | — |
浙江阿佩克斯② | — | 1798 | 0.81 | 0.109 | 74 | 97.05 | — | — |
广西北海星石② | — | 1637 | 0.85 | 0.290 | 144 | — | — | — |
表2 不同电容炭厂商产品的基本指标
厂家 | 型号 | 比表面积 /m2·g-1 | 孔容 /cm3·g-1 | 灰分(质量分数)/% | 铁含量② /μg·g-1 | 碳质量分数②/% | 比电容 | |
---|---|---|---|---|---|---|---|---|
/F·g-1 | /F·cm-3 | |||||||
日本可乐丽公司(Kuraray Chemical)[ | YP50F | 1600 | 0.7 | 0.3 | 25 | 95.99 | 28 | 19 |
YP80F | 2100 | 0.94 | 0.5 | — | — | 32 | 18 | |
韩国PCT公司Power Carbon Technology① | CEP21KSN | 1650~1950 | — | <0.1 | 22 | 96.90 | 36.2 | 17.5 |
CEP21KS | 1850~2150 | — | <0.1 | — | — | 37.5 | 18.1 | |
PCT9 | 1850~2050 | — | <0.1 | — | — | 35.6 | 17.1 | |
美国EnerG2① | AeroVolt | 1725 | 0.70~1.30 | <0.02 | — | — | — | — |
斯里兰卡Haycarb② | — | 1572 | 0.83 | 0.012 | 25 | 97.65 | — | — |
河南大潮炭能② | — | 1919 | 0.89 | 0.239 | 199 | 96.33 | — | — |
福建元力② | — | 1705 | 0.43 | 0.127 | 130 | 94.85 | — | — |
浙江阿佩克斯② | — | 1798 | 0.81 | 0.109 | 74 | 97.05 | — | — |
广西北海星石② | — | 1637 | 0.85 | 0.290 | 144 | — | — | — |
1 | 魏颖. 超级电容器关键材料制备及应用[M]. 北京: 化学工业出版社, 2018: 2. |
WEI Ying. Preparation and application of key material for supercapacitor[M]. Beijing: Chemical Industry Press, 2018: 2. | |
2 | LI Qing, XU Yuxia, ZHENG Shasha, et al. Recent progress in some amorphous materials for supercapacitors[J]. Small, 2018, 14(28): e1800426. |
3 | MCCLOSKEY B D. Expanding the Ragone plot: pushing the limits of energy storage[J]. Journal of Physical Chemistry Letters, 2018, 6(18): 3592-3593. |
4 | XIE Lijing, SU Fangyuan, XIE Longfei, et al. Effect of pore structure and doping species on charge storage mechanisms in porous carbon-based supercapacitors[J]. Materials Chemistry Frontiers, 2020, 4(9): 2610-2634. |
5 | LENG Changyu, ZHAO Zhongbin, ZHAO Yinzhou, et al. 3D carbon frameworks for ultrafast charge/discharge rate supercapacitors with high energy-power density[J]. Nano-Micro Letters, 2020, 13(1): 1-11. |
6 | GUO Wei, YU Chang, ZHAO Changtai, et al. Boosting charge storage in 1D manganese oxide-carbon composite by phosphorus-assisted structural modification for supercapacitor applications[J]. Energy Storage Materials, 2020, 31: 172-180. |
7 | HE Xiaojun, ZHANG Nan, SHAO Xiaolong, et al. A layered-template-nanospace-confinement strategy for production of corrugated graphene nanosheets from petroleum pitch for supercapacitors[J]. Chemical Engineering Journal, 2016, 297: 121-127. |
8 | 阮殿波. 动力型双电层电容器: 原理、制造及应用[M]. 北京: 科学出版社, 2018: 48-49. |
RUAN Dianbo. Power double layer capacitor: theory, manufacture and application[M]. Beijing: Science Press, 2018: 48-49. | |
9 | 傅冠生, 曾福娣, 阮殿波. 超级电容器技术在轨道交通行业中的应用[J]. 电力机车与城轨车辆, 2014, 37(2): 1-6. |
FU Guansheng, ZENG Fudi, RUAN Dianbo. Application of super capacitor technology in rail transit industry[J]. Electric Locomotives & Mass Transit Vehicles, 2014, 37(2): 1-6. | |
10 | 陈雪丹, 陈硕翼, 乔志军, 等. 超级电容器的应用[J]. 储能科学与技术, 2016, 5(6): 800-806. |
CHEN Xuedan, CHEN Shuoyi, QIAO Zhijun, et al. Applications of supercapacitors[J]. Energy Storage Science and Technology, 2016, 5(6): 800-806. | |
11 | 荆葛, 阮殿波. 电化学电容器正名[J]. 储能科学与技术, 2020, 9(4): 1009-1014. |
JING Ge, RUAN Dianbo. Electrochemical capacitors clarifying[J]. Energy Storage Science and Technology, 2020, 9(4): 1009-1014. | |
12 | WANG Yanggang, XIA Yongyao. Recent progress in supercapacitors: from materials design to system construction[J]. Advanced Materials, 2013, 25(37): 5336-5342. |
13 | MCCREERY R L. Advanced carbon electrode materials for molecular electrochemistry[J]. Chemical Reviews, 2008, 108(7): 2646-2687. |
14 | KIM M H, KIM K B, PARK S M, et al. Hierarchically structured activated carbon for ultracapacitors[J]. Scientific Reports, 2016, 6: 21182. |
15 | ZHENG Kaiwen, FAN Xiaorong, MAO Yingzhu, et al. The well-designed hierarchical structure of Musa basjoo for supercapacitors[J]. Scientific Reports, 2016, 6:20306-20311. |
16 | CHENG Peng, LI Ting, YU Hang, et al. Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors[J]. Journal of Physical Chemistry C, 2016, 120(4): 2079-2086. |
17 | XU Bin, WU Feng, CHEN Shi, et al. Activated carbon fiber cloths as electrodes for high performance electric double layer capacitors[J].Electrochimica Acta, 2007, 52(13): 4595-4598. |
18 | GAO Wenjun, WAN Ying, DOU Yuqian, et al. Synthesis of partially graphitic ordered mesoporous carbons with high surface areas[J]. Advanced Energy Materials, 2011, 1(1): 115-123. |
19 | YAN Yanfang, CHENG Qilin, ZHU Zhengju, et al. Controlled synthesis of hierarchical polyaniline nanowires/ordered bimodal mesoporous carbon nanocomposites with high surface area for supercapacitor electrodes[J]. Journal of Power Sources, 2013, 240: 544-550. |
20 | MAYER S T, PEKALA R W, KASCHMITTER J L. The aerocapacitor: an electrochemical double-layer energy-storage device[J]. Journal of the Electrochemical Society, 1993, 140(2): 446-451. |
21 | ZHU Jiali, YANG Xi, FU Zhibing, et al. Fabrication of ultra-low density, high surface area carbon aerogels and their application in supercapacitors[J]. Materials Science Forum, 2016, 852: 1349-1355. |
22 | FUTABA D N, HATA K J, YAMADA T, et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes[J]. Nature Materials, 2006, 5(12): 987-994. |
23 | ZHANG Hao, CAO Gaoping, WANG Zhiyong, et al. Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability[J]. Electrochemistry Communications, 2008, 10(7): 1056-1059. |
24 | HUANG Yi, LIANG Jiajie, CHEN Yongsheng. An overview of the applications of graphene-based materials in supercapacitors[J]. Small, 2012, 8(12): 1805-1834. |
25 | ZHANG Kai, MAO Lu, ZHANG Lili, et al. Surfactant-intercalated, chemically reduced graphene oxide for high performance supercapacitor electrodes[J]. Journal of Materials Chemistry, 2011, 21(20): 7302-7307. |
26 | ZHAO Yang, LIU Jia, HU Yue, et al. Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes[J]. Advanced Materials, 2013, 25(4): 591-595. |
27 | HE Xiaojun, ZHANG Hebao, ZHANG Hao, et al. Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(46): 19633-19640. |
28 | 国家市场监督管理总局, 国家标准化管理委员会. 超级电容器用活性炭: [S]. 北京: 中国标准出版社, 2019. |
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Activated carbon for supercapacitor: [S]. Beijing: Standards Press of China, 2019. | |
29 | GUO Yan, SHI Zhiqiang, CHEN Mingmin, et al. Hierarchical porous carbon derived from sulfonated pitch for electrical double layer capacitors[J]. Journal of Power Sources, 2014, 252: 235-243. |
30 | XU Huan, GAO Qiuming, GUO Hongliang, et al. Hierarchical porous carbon obtained using the template of NaOH-treated zeolite β and its high performance as supercapacitor[J]. Microporous and Mesoporous Materials, 2010, 133(1/2/3): 106-114. |
31 | XIA Kaisheng, GAO Qiuming, JIANG Jinhua, et al. Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials[J]. Carbon, 2008, 46(13): 1718-1726. |
32 | MO Shanshan, SUN Zhenfan, HUANG Xiangjin, et al. Synthesis, characterization and supercapacitive properties of hierarchical porous carbons[J]. Synthesis Metals, 2012, 162(1/2): 85-88. |
33 | CHMIOLA J, YUSHIN G, GOGOTSI Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science, 2006, 313(5794): 1760-1763. |
34 | LARGEOT C, PORTET C, CHMIOLA J, et al. Relation between the ion size and pore size for an electric double-layer capacitor[J]. Journal of the American Chemical Society, 2008, 130(9): 2730-2731. |
35 | ZHANG Long, YANG Xi, ZHANG Fan, et al. Controlling the effective surface area and pore size distribution of sp2 carbon materials and their impact on the capacitance performance of these materials[J]. Journal of the American Chemical Society, 2013, 135(15): 5921-5929. |
36 | GUO Wei, YU Chang, LI Shaofeng, et al. Toward commercial-level mass-loading electrodes for supercapacitors: opportunities, challenges and perspectives[J]. Energy & Environmental Science, 2021, 14(2): 576-601. |
37 | ZHOU Shaoyun, LI Xinhai, WANG Zhixing, et al. Effect of activated carbon and electrolyte on properties of supercapacitor[J]. Transactions of Nonferrous Metals Socitey of China, 2007, 17(6): 1328-1333. |
38 | CHEN Chengmeng, ZHANG Qiang, YANG Mangguo, et al. Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors[J]. Carbon, 2012, 50(10): 3572-3584. |
39 | CHEN Chengmeng, ZHANG Qiang, ZHAO Xiaochen, et al. Hierarchically aminated graphene honeycombs for electrochemical capacitive energy storage[J]. Journal of Materials Chemistry, 2012, 22(28): 14076. |
40 | CHEN Wenzhao, SHI Jingjing, ZHU Ttaishan, et al. Preparation of nitrogen and sulfur dual-doped mesoporous carbon for supercapacitor electrodes with long cycle stability[J]. Electrochimica Acta, 2015, 177: 327-334. |
41 | LOTA G, CENTENO T A, FRACKOWIAK E, et al. Improvement of the structural and chemical properties of a commercial activated carbon for its application in electrochemical capacitors[J]. Electrochimica Acta, 2008, 53(5): 2210-2216. |
42 | ANDREAS H A, CONWAY B E. Examination of the double-layer capacitance of an high specific-area C-cloth electrode as titrated from acidic to alkaline pHs[J]. Electrochimica Acta, 2006, 51(28): 6510-6520. |
43 | LIU Haiyan, SONG Huaihe, CHEN Xiaohong, et al. Effects of nitrogen- and oxygen-containing functional groups of activated carbon nanotubes on the electrochemical performance in supercapacitors[J]. Journal of Power Sources, 2015, 285: 303-309. |
44 | YUAN Shiting, HUANG Xianhong, WANG Hao, et al. Structure evolution of oxygen removal from porous carbon for optimizing supercapacitor performance[J]. Journal of Energy Chemistry, 2020, 51: 396-404. |
45 | BI Zhihong, HUO Li, KONG Qingqiang, et al. Structural evolution of phosphorus species on graphene with a stabilized electrochemical interface[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11421-11430. |
46 | WANG Zhefan, YI Zhonglin, AHMAD Aziz, et al. Combined DFT and experiment: stabilizing the electrochemical interfaces via boron Lewis acids[J]. Journal of Energy Chemistry, 2021, 59: 100-107. |
47 | BROUJI El H EL, BRIAT O, VINASSA J M, et al. Analysis of the dynamic behavior changes of supercapacitors during calendar life test under several voltages and temperatures conditions[J]. Microelectronics Reliability, 2009, 49(9/10/11): 1391-1397. |
48 | KOTZ R, RUCH P, CERICOLA D. Aging and failure mode of electrochemical double layer capacitors during accelerated constant load tests[J]. Journal of Power Sources, 2010, 195(3): 923-928. |
49 | LIU Kunlun, YU Chang, GUO Wei, et al. Recent research advances of self-discharge in supercapacitors: mechanisms and suppressing strategies[J]. Journal of Energy Chemistry, 2021, 58: 94-109. |
50 | BITTNER A M, ZHU M, YANG Y, et al. Ageing of electrochemical double layer capacitors[J]. Journal of Power Sources, 2012, 203: 262-273. |
51 | GUALOUS H, GALLAY R, ALCICEK G, et al. Supercapacitor ageing at constant temperature and constant voltage and thermal shock[J]. Microelectronics Reliability, 2010, 50(9/10/11): 1783-1788. |
52 | KAZARYAN S A, KHARISOV G G, LITVINENKO S V, et al. Erratum: self-discharge related to iron ions and its effect on the parameters of HES PbO2∣ H2SO4 ∣ C systems[J]. Journal of The Electrochemical Society, 2007, 154(8): A751-A759. |
53 | ANDREAS H A, LUSSIER K, OICKLE A M. Effect of Fe-contamination on rate of self-discharge in carbon-based aqueous electrochemical capacitors[J]. Journal of Power Sources, 2009, 187(1): 275-283. |
54 | 侯敏, 孙康, 邓先伦, 等. 椰壳基超级电容活性炭的制备及其电化学性能研究[J]. 生物质化学工程, 2016, 50(2): 13-18. |
HOU Min, SUN Kang, DENG Xianlun, et al. Preparation and electrochemical performance of coconut shell-based activated carbon for supercapacitor[J]. Biomass Chemical Engineering, 2016, 50(2): 13-18. | |
55 | 杨静, 刘亚菲, 陈晓妹, 等. 高能量密度和功率密度炭电极材料[J]. 物理化学学报, 2008, 24(1): 13-19. |
YANG Jing, LIU Yafei, CHEN Xiaomei, et al. Carbon electrode material with high densities of energy and power[J]. Acta Physico-Chimica Sinica, 2008, 24(1): 13-19. | |
56 | 邢宝林, 张传祥, 谌伦建. 双电层电容器用煤基活性炭的制备与电化学性能表征[J]. 材料导报, 2009, 23(22): 106-109. |
XING Baolin, ZHANG Chuanxiang, CHEN Lunjian. Preparation and electrochemical performance of coal-based activated carbons for electric double layer capacitor[J]. Materials Reports, 2009, 23(22): 106-109. | |
57 | ZHANG Chuanxiang, LONG Donghui, XING Baolin, et al. The superior electrochemical performance of oxygen-rich activated carbons prepared from bituminous coal[J]. Electrochemistry Communications, 2008, 10(11): 1809-1811. |
58 | HE Xiaojun, LI Xiaojing, WU Mingbo, et al. Efficient preparation of porous carbons from coal tar pitch for high performance supercapacitors[J]. New Carbon Materials, 2014, 29(6): 493-502. |
59 | WEI Feng, HE Xiaojun, MA Lianbo, et al. 3D N,O-codoped egg-box-like carbons with tuned channels for high areal capacitance supercapacitors[J]. Nano-Micro Letters, 2020, 12(1): 1-12. |
60 | 周颖, 宋晓娜, 舒成, 等. 模板法煤沥青基中孔炭的制备及其电化学性能[J]. 新型炭材料, 2011, 26(3): 187-191. |
ZHOU Ying, SONG Xiaona, SHU Cheng, et al. The electrochemical properties of templated and activated mesoporous carbons produced from coal pitch[J]. New Carbon Materials, 2011, 26(3): 187-191. | |
61 | LI Maoqun, BI Zhihong, SUN Guohua, et al. From starch to carbon materials: insight into the cross-linking reaction and its influence on the carbonization process[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 14796-14804. |
62 | LI Feng, AHMAD Aziz, XIE Lijing, et al. Phosphorus-modified porous carbon aerogel microspheres as high volumetric energy density electrode for supercapacitor[J]. Electrochimica Acta, 2019, 318: 151-160. |
63 | CAO Jinhui, ZHU Chunyu, AOKI Yoshitaka, et al. Starch-derived hierarchical porous carbon with controlled porosity for high performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(6): 7292-7303. |
64 | LONG Conglai, JIANG Lili, WU Xiaoliang, et al. Facile synthesis of functionalized porous carbon with three-dimensional interconnected pore structure for high volumetric performance supercapacitors[J]. Carbon, 2015, 93: 412-420. |
65 | 吴明铂. 化学活化法制备活性炭的研究进展[J]. 炭素技术, 1999, 18(4): 19-23. |
WU Mingbo. Advance of research in making actived carbon by chemical activation[J]. Carbon Techniques, 1999, 18(4): 19-23. | |
66 | 杨登莲. 中试超级活性炭制备及注意事项[J]. 石河子科技, 2011(6): 35-38. |
YANG Denglian. Preparation of super active carbon in pilot scale and cautions[J]. Shihezi Science and Technology, 2011(6): 35-38. | |
67 | 刘洪波, 常俊玲, 张红波. 双电层电容器高比表面积活性炭的研究[J]. 电子元件与材料, 2002, 21(2): 19-21, 24. |
LIU Hongbo, CHANG Junling, ZHANG Hongbo. Study on the activated carbon of high specific surface area for electric double-layer capacitors[J]. Electronic Components and Materials, 2002, 21(2): 19-21, 24. | |
68 | 乔文明, 查庆芳, 凌立成, 等. 氧化沥青的活化研究[J]. 炭素技术, 1994, 13(2): 1-4. |
QIAO Wenming, ZHA Qingfang, LING Licheng, et al. The study on activation of oxidized pitch[J]. Carbon Techniques, 1994, 13(2): 1-4. | |
69 | KURZWEIL P, CHWISTEK M. Electrochemical stability of organic electrolytes in superca pacitors: spectroscopy and gas analysis of decomposition products [J]. Journal of Power Sources, 2008, 176(2): 555-567. |
[1] | 肖辉, 张显均, 兰治科, 王苏豪, 王盛. 液态金属绕流管束流动传热进展[J]. 化工进展, 2023, 42(S1): 10-20. |
[2] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[3] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[4] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[5] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[6] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[7] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[8] | 陈林, 徐培渊, 张晓慧, 陈杰, 徐振军, 陈嘉祥, 密晓光, 冯永昌, 梅德清. 液化天然气绕管式换热器壳侧混合工质流动及传热特性[J]. 化工进展, 2023, 42(9): 4496-4503. |
[9] | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
[10] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[11] | 汪健生, 张辉鹏, 刘雪玲, 傅煜郭, 朱剑啸. 多孔介质结构对储层内流动和换热特性的影响[J]. 化工进展, 2023, 42(8): 4212-4220. |
[12] | 王云刚, 焦健, 邓世丰, 赵钦新, 邵怀爽. 冷凝换热与协同脱硫性能实验分析[J]. 化工进展, 2023, 42(8): 4230-4237. |
[13] | 李洞, 王倩倩, 张亮, 李俊, 付乾, 朱恂, 廖强. 非水系纳米流体热再生液流电池串联堆性能特性[J]. 化工进展, 2023, 42(8): 4238-4246. |
[14] | 王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[15] | 张耀杰, 张传祥, 孙悦, 曾会会, 贾建波, 蒋振东. 煤基石墨烯量子点在超级电容器中的应用[J]. 化工进展, 2023, 42(8): 4340-4350. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |