19 |
SUN G D, ZHAO Z J, MU R T, et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation[J]. Nature Communications, 2018, 9: 4454.
|
20 |
CAO X R, JI Y F, LUO Y. Dehydrogenation of propane to propylene by a Pd/Cu single-atom catalyst: insight from first-principles calculations[J]. The Journal of Physical Chemistry C, 2015, 119(2): 1016-1023.
|
21 |
NIU K F, QI Z H, LI Y Y, et al. Theoretical investigation of on-purpose propane dehydrogenation over the two-dimensional Ru-Pc framework[J]. Journal of Physical Chemistry C, 2019, 123(8): 4969-4976.
|
22 |
KONG N, FAN X, LIU F, et al. Single vanadium atoms anchored on graphitic carbon nitride as a high-performance catalyst for non-oxidative propane dehydrogenation[J]. ACS Nano, 2020, 14(5): 5772-5779.
|
23 |
巩金龙, 孙国栋, 赵志坚, 等. 氧化铝负载的PtCu单原子合金催化剂及其制备方法和应用: CN108620092A[P]. 2018-10-09.
|
|
GONG Jinlong, SUN Guodong, ZHAO Zhijian, et al. Alumina-supported PtCu single-atom alloy catalysts and its preparation method and application: CN108620092A[P]. 2018-10-09.
|
24 |
乔波涛, 郭亚琳, 黄家辉, 等. 一种铂单原子催化剂的制备及其在丙烷脱氢制丙烯反应中的应用: CN110237840A[P]. 2019-09-17.
|
|
QIAO Botao, GUO Yalin, HUANG Jiahui, et al. Preparation of platinum monoatomic catalyst and application of catalyst in reaction of propane dehydrogenation to propylene: CN110237840A[P]. 2019-09-17.
|
25 |
李亚栋, 陈晨, 李杨, 等. 用于低碳烃类脱氢制低碳烯烃的单原子催化剂及催化方法: CN109225306B[P]. 2019-01-18.
|
|
LI Yadong, CHEN Chen, LI Yang, et al. Monoatomic catalyst for preparation of low-carbon olefin by means of dehydrogenation of lower low-carbon hydrocarbons, and catalytic method: CN109225306B[P]. 2019-01-18.
|
26 |
SUN Q M, WANG N, FAN Q Y, et al. Subnanometer bimetallic platinum-zinc clusters in zeolites for propane dehydrogenation[J]. Angewandte Chemie International Edition, 2020, 59(44): 19450-19459.
|
27 |
NAKAYA Y, HIRAYAMA J, YAMAZOE S, et al. Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation[J]. Nature Communications, 2020, 11: 2838.
|
28 |
LIU L C, LOPEZ-HARO M, LOPES C W, et al. Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites[J]. Nature Catalysis, 2020, 3(8): 628-638.
|
29 |
LIU L C, DÍAZ U, ARENAL R, et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D[J]. Nature Materials, 2017, 16(1): 132-138.
|
1 |
SATTLER J J H B, RUIZ-MARTINEZ J, SANTILLAN-JIMENEZ E, et al. Catalytic dehydrogenation of light alkanes on metals and metal oxides[J]. Chemical Reviews, 2014, 114(20): 10613-10653.
|
2 |
CORMA A, MELO F V, SAUVANAUD L, et al. Light cracked naphtha processing: controlling chemistry for maximum propylene production[J]. Catalysis Today, 2005, 107/108: 699-706.
|
3 |
LI J Z, WEI Y X, CHEN J R, et al. Observation of heptamethylbenzenium cation over SAPO-type molecular sieve DNL-6 under real MTO conversion conditions[J]. Journal of the American Chemical Society, 2012, 134(2): 836-839.
|
4 |
苏建伟, 牛海宁. 丙烷脱氢制丙烯技术进展[J]. 化工科技, 2006, 14(4): 62-66.
|
|
SU Jianwei, NIU Haining. Technology progress of dehydrogenation from propane to propylene[J]. Science & Technology in Chemical Industry, 2006, 14(4): 62-66.
|
5 |
ZHU J, YANG M L, YU Y D, et al. Size-dependent reaction mechanism and kinetics for propane dehydrogenation over Pt catalysts[J]. ACS Catalysis, 2015, 5(11): 6310-6319.
|
6 |
SANTHOSH KUMAR M, CHEN D, WALMSLEY J C, et al. Dehydrogenation of propane over Pt-SBA-15: effect of Pt particle size[J]. Catalysis Communications, 2008, 9(5): 747-750.
|
7 |
YANG X F, WANG A Q, QIAO B T, et al. Single-atom catalysts: a new frontier in heterogeneous catalysis[J]. Accounts of Chemical Research, 2013, 46(8): 1740-1748.
|
8 |
张宁强, 李伶聪, 黄星, 等. 单原子催化剂的研究进展[J]. 中国稀土学报, 2018, 36(5): 513-532.
|
|
ZHANG Ningqiang, LI Lingcong, HUANG Xing, et al. Research progress of single-atom catalysis[J]. Journal of the Chinese Society of Rare Earths, 2018, 36(5): 513-532.
|
9 |
QIAO B T, WANG A Q, YANG X F, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nature Chemistry, 2011, 3(8): 634-641.
|
10 |
ZHANG W, WANG H Z, JIANG J W, et al. Size dependence of Pt catalysts for propane dehydrogenation: from atomically dispersed to nanoparticles[J]. ACS Catalysis, 2020, 10(21): 12932-12942.
|
11 |
CAO X R. Insight into mechanism and selectivity of propane dehydrogenation over the Pd-doped Cu(111) surface[J]. RSC Advances, 2016, 6(70): 65524-65532.
|
12 |
ZHANG J, ZHOU R J, CHANG Q Y, et al. Tailoring catalytic properties of V2O3 to propane dehydrogenation through single-atom doping: a DFT study[J]. Catalysis Today, 2021, 368: 46-57.
|
13 |
CHANG Q Y, YIN Q, MA F, et al. Tuning adsorption and catalytic properties of α-Cr2O3 and ZnO in propane dehydrogenation by creating oxygen vacancy and doping single Pt atom: a comparative first-principles study[J]. Industrial & Engineering Chemistry Research, 2019, 58(24): 10199-10209.
|
14 |
WOLF M, RAMAN N, TACCARDI N, et al. Capturing spatially resolved kinetic data and coking of Ga-Pt supported catalytically active liquid metal solutions during propane dehydrogenation in situ[J]. Faraday Discussions, 2021, 229: 359-377.
|
15 |
HU Z P, YANG D D, WANG Z, et al. State-of-the-art catalysts for direct dehydrogenation of propane to propylene[J]. Chinese Journal of Catalysis, 2019, 40(9): 1233-1254.
|
16 |
GAO X Q, LU W D, HU S Z, et al. Rod-shaped porous alumina-supported Cr2O3 catalyst with low acidity for propane dehydrogenation[J]. Chinese Journal of Catalysis, 2019, 40(2): 184-191.
|
30 |
LIU L C, LOPEZ-HARO M, LOPES C W, et al. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis[J]. Nature Materials, 2019, 18(8): 866-873.
|
31 |
邓高明. Al2O3担载Pt基催化剂的丙烷脱氢性能研究[D]. 大连: 大连理工大学, 2016.
|
17 |
XIONG H F, LIN S, GOETZE J, et al. Thermally stable and regenerable platinum-tin clusters for propane dehydrogenation prepared by atom trapping on ceria[J]. Angewandte Chemie International Edition, 2017, 56(31): 8986-8991.
|
18 |
MA F, CHANG Q Y, YIN Q, et al. Rational screening of single-atom-doped ZnO catalysts for propane dehydrogenation from microkinetic analysis[J]. Catalysis Science & Technology, 2020, 10(15): 4938-4951.
|
31 |
DENG G M. Al2O3 supported Pt-based catalysts for propane dehydrogenation[D]. Dalian: Dalian University of Technology, 2016.
|
32 |
李春义, 王国玮. 丙烷/异丁烷脱氢Pt系催化剂的研究进展 Ⅲ.Pt的存在形态、颗粒大小与脱氢性能[J]. 石化技术与应用, 2017, 35(3): 171-176, 184.
|
|
LI Chunyi, WANG Guowei. Pt-based catalysts for propane/isobutane dehydrogenation Ⅲ. Existing state and particle size of Pt[J]. Petrochemical Technology & Application, 2017, 35(3): 171-176, 184.
|
33 |
ZHANG H X, ZHANG Y W, ZHOU Y M, et al. Morphology-controlled fabrication of biomorphic alumina-based hierarchical LDH compounds for propane dehydrogenation reaction[J]. New Journal of Chemistry, 2018, 42(1): 103-110.
|
34 |
SHI L, DENG G M, LI W C, et al. Al2O3 nanosheets rich in pentacoordinate Al3+ ions stabilize Pt-Sn clusters for propane dehydrogenation[J]. Angewandte Chemie International Edition, 2015, 54(47): 13994-13998.
|
35 |
WANG T, JIANG F, LIU G, et al. Effects of Ga doping on Pt/CeO2-Al2O3 catalysts for propane dehydrogenation[J]. American Institute of Chemical Engineers, 2016, 62(12): 4365-4376.
|
36 |
YANG M L, ZHU Y A, ZHOU X G, et al. First-principles calculations of propane dehydrogenation over PtSn catalysts[J]. ACS Catalysis, 2012, 2(6): 1247-1258.
|
37 |
ZHU Y R, AN Z, SONG H Y, et al. Lattice-confined Sn(Ⅳ/Ⅱ) stabilizing raft-like Pt clusters: high selectivity and durability in propane dehydrogenation[J]. ACS Catalysis, 2017, 7(10): 6973-6978.
|
38 |
HAN Z, LI S, JIANG F, et al. Propane dehydrogenation over Pt-Cu bimetallic catalysts: the nature of coke deposition and the role of copper[J]. Nanoscale, 2014, 6(17): 10000-10008.
|
39 |
VU B K, SONG M B, AHN I Y, et al. Pt-Sn alloy phases and coke mobility over Pt-Sn/Al2O3 and Pt-Sn/ZnAl2O4 catalysts for propane dehydrogenation[J]. Applied Catalysis A: General, 2011, 400(1/2): 25-33.
|
40 |
SUN X Y, LIU M J, HUANG Y Y, et al. Electronic interaction between single Pt atom and vacancies on boron nitride nanosheets and its influence on the catalytic performance in the direct dehydrogenation of propane[J]. Chinese Journal of Catalysis, 2019, 40(6): 819-825.
|