化工进展 ›› 2021, Vol. 40 ›› Issue (12): 6688-6695.DOI: 10.16085/j.issn.1000-6613.2020-2560
收稿日期:
2020-12-24
修回日期:
2021-03-07
出版日期:
2021-12-05
发布日期:
2021-12-21
通讯作者:
程道建
作者简介:
吴建国(1995—),男,博士研究生,研究方向为丙烷脱氢单原子催化剂的制备与性能。E-mail:基金资助:
WU Jianguo(), WU Dengfeng, CHENG Daojian(
)
Received:
2020-12-24
Revised:
2021-03-07
Online:
2021-12-05
Published:
2021-12-21
Contact:
CHENG Daojian
摘要:
丙烯是一种重要的有机化工原料和石油化工原料中间体,近年来在国内外市场的需求量持续增长。丙烷直接脱氢制丙烯技术具有收率高、技术成熟、经济环保等优点,备受研究者们的广泛关注。文中综述了丙烷直接脱氢制丙烯用单原子催化剂的研究进展,介绍了单原子催化剂的丙烷脱氢反应机理,探讨了单原子催化剂的失活行为,总结了活性组分、助剂及载体对单原子催化剂催化丙烷脱氢性能的影响,并分析讨论了单原子催化剂在当前研究中存在的问题。最后针对单原子催化剂虽具有优异的丙烯选择性和稳定性,但存在丙烷脱氢活性依旧不足的问题,提出了调控单原子催化剂电子结构促进丙烷脱氢活性的设计思路,为未来丙烷脱氢制丙烯高效单原子催化剂的设计提供了指导方向。
中图分类号:
吴建国, 吴登峰, 程道建. 丙烷脱氢制丙烯用单原子催化剂研究进展[J]. 化工进展, 2021, 40(12): 6688-6695.
WU Jianguo, WU Dengfeng, CHENG Daojian. Advances in single-atom catalysts for dehydrogenation of propane to propylene[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6688-6695.
催化剂 | 丙烷转化率/% | 丙烯选择性/% | 炭质量分数/ % |
---|---|---|---|
Pt/CeO2 | 100 | 0 | 0.9(3.4) |
Pt-Sn/CeO2 | 39.5 | 84.5 | 0.5(2.8) |
Pt-Sn/Al2O3 | 32.6 | 71.4 | 0.3(3.0) |
表1 负载型Pt和Pt-Sn催化剂丙烷脱氢性能[17]
催化剂 | 丙烷转化率/% | 丙烯选择性/% | 炭质量分数/ % |
---|---|---|---|
Pt/CeO2 | 100 | 0 | 0.9(3.4) |
Pt-Sn/CeO2 | 39.5 | 84.5 | 0.5(2.8) |
Pt-Sn/Al2O3 | 32.6 | 71.4 | 0.3(3.0) |
19 | SUN G D, ZHAO Z J, MU R T, et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation[J]. Nature Communications, 2018, 9: 4454. |
20 | CAO X R, JI Y F, LUO Y. Dehydrogenation of propane to propylene by a Pd/Cu single-atom catalyst: insight from first-principles calculations[J]. The Journal of Physical Chemistry C, 2015, 119(2): 1016-1023. |
21 | NIU K F, QI Z H, LI Y Y, et al. Theoretical investigation of on-purpose propane dehydrogenation over the two-dimensional Ru-Pc framework[J]. Journal of Physical Chemistry C, 2019, 123(8): 4969-4976. |
22 | KONG N, FAN X, LIU F, et al. Single vanadium atoms anchored on graphitic carbon nitride as a high-performance catalyst for non-oxidative propane dehydrogenation[J]. ACS Nano, 2020, 14(5): 5772-5779. |
23 | 巩金龙, 孙国栋, 赵志坚, 等. 氧化铝负载的PtCu单原子合金催化剂及其制备方法和应用: CN108620092A[P]. 2018-10-09. |
GONG Jinlong, SUN Guodong, ZHAO Zhijian, et al. Alumina-supported PtCu single-atom alloy catalysts and its preparation method and application: CN108620092A[P]. 2018-10-09. | |
24 | 乔波涛, 郭亚琳, 黄家辉, 等. 一种铂单原子催化剂的制备及其在丙烷脱氢制丙烯反应中的应用: CN110237840A[P]. 2019-09-17. |
QIAO Botao, GUO Yalin, HUANG Jiahui, et al. Preparation of platinum monoatomic catalyst and application of catalyst in reaction of propane dehydrogenation to propylene: CN110237840A[P]. 2019-09-17. | |
25 | 李亚栋, 陈晨, 李杨, 等. 用于低碳烃类脱氢制低碳烯烃的单原子催化剂及催化方法: CN109225306B[P]. 2019-01-18. |
LI Yadong, CHEN Chen, LI Yang, et al. Monoatomic catalyst for preparation of low-carbon olefin by means of dehydrogenation of lower low-carbon hydrocarbons, and catalytic method: CN109225306B[P]. 2019-01-18. | |
26 | SUN Q M, WANG N, FAN Q Y, et al. Subnanometer bimetallic platinum-zinc clusters in zeolites for propane dehydrogenation[J]. Angewandte Chemie International Edition, 2020, 59(44): 19450-19459. |
27 | NAKAYA Y, HIRAYAMA J, YAMAZOE S, et al. Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation[J]. Nature Communications, 2020, 11: 2838. |
28 | LIU L C, LOPEZ-HARO M, LOPES C W, et al. Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites[J]. Nature Catalysis, 2020, 3(8): 628-638. |
29 | LIU L C, DÍAZ U, ARENAL R, et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D[J]. Nature Materials, 2017, 16(1): 132-138. |
1 | SATTLER J J H B, RUIZ-MARTINEZ J, SANTILLAN-JIMENEZ E, et al. Catalytic dehydrogenation of light alkanes on metals and metal oxides[J]. Chemical Reviews, 2014, 114(20): 10613-10653. |
2 | CORMA A, MELO F V, SAUVANAUD L, et al. Light cracked naphtha processing: controlling chemistry for maximum propylene production[J]. Catalysis Today, 2005, 107/108: 699-706. |
3 | LI J Z, WEI Y X, CHEN J R, et al. Observation of heptamethylbenzenium cation over SAPO-type molecular sieve DNL-6 under real MTO conversion conditions[J]. Journal of the American Chemical Society, 2012, 134(2): 836-839. |
4 | 苏建伟, 牛海宁. 丙烷脱氢制丙烯技术进展[J]. 化工科技, 2006, 14(4): 62-66. |
SU Jianwei, NIU Haining. Technology progress of dehydrogenation from propane to propylene[J]. Science & Technology in Chemical Industry, 2006, 14(4): 62-66. | |
5 | ZHU J, YANG M L, YU Y D, et al. Size-dependent reaction mechanism and kinetics for propane dehydrogenation over Pt catalysts[J]. ACS Catalysis, 2015, 5(11): 6310-6319. |
6 | SANTHOSH KUMAR M, CHEN D, WALMSLEY J C, et al. Dehydrogenation of propane over Pt-SBA-15: effect of Pt particle size[J]. Catalysis Communications, 2008, 9(5): 747-750. |
7 | YANG X F, WANG A Q, QIAO B T, et al. Single-atom catalysts: a new frontier in heterogeneous catalysis[J]. Accounts of Chemical Research, 2013, 46(8): 1740-1748. |
8 | 张宁强, 李伶聪, 黄星, 等. 单原子催化剂的研究进展[J]. 中国稀土学报, 2018, 36(5): 513-532. |
ZHANG Ningqiang, LI Lingcong, HUANG Xing, et al. Research progress of single-atom catalysis[J]. Journal of the Chinese Society of Rare Earths, 2018, 36(5): 513-532. | |
9 | QIAO B T, WANG A Q, YANG X F, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nature Chemistry, 2011, 3(8): 634-641. |
10 | ZHANG W, WANG H Z, JIANG J W, et al. Size dependence of Pt catalysts for propane dehydrogenation: from atomically dispersed to nanoparticles[J]. ACS Catalysis, 2020, 10(21): 12932-12942. |
11 | CAO X R. Insight into mechanism and selectivity of propane dehydrogenation over the Pd-doped Cu(111) surface[J]. RSC Advances, 2016, 6(70): 65524-65532. |
12 | ZHANG J, ZHOU R J, CHANG Q Y, et al. Tailoring catalytic properties of V2O3 to propane dehydrogenation through single-atom doping: a DFT study[J]. Catalysis Today, 2021, 368: 46-57. |
13 | CHANG Q Y, YIN Q, MA F, et al. Tuning adsorption and catalytic properties of α-Cr2O3 and ZnO in propane dehydrogenation by creating oxygen vacancy and doping single Pt atom: a comparative first-principles study[J]. Industrial & Engineering Chemistry Research, 2019, 58(24): 10199-10209. |
14 | WOLF M, RAMAN N, TACCARDI N, et al. Capturing spatially resolved kinetic data and coking of Ga-Pt supported catalytically active liquid metal solutions during propane dehydrogenation in situ[J]. Faraday Discussions, 2021, 229: 359-377. |
15 | HU Z P, YANG D D, WANG Z, et al. State-of-the-art catalysts for direct dehydrogenation of propane to propylene[J]. Chinese Journal of Catalysis, 2019, 40(9): 1233-1254. |
16 | GAO X Q, LU W D, HU S Z, et al. Rod-shaped porous alumina-supported Cr2O3 catalyst with low acidity for propane dehydrogenation[J]. Chinese Journal of Catalysis, 2019, 40(2): 184-191. |
30 | LIU L C, LOPEZ-HARO M, LOPES C W, et al. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis[J]. Nature Materials, 2019, 18(8): 866-873. |
31 | 邓高明. Al2O3担载Pt基催化剂的丙烷脱氢性能研究[D]. 大连: 大连理工大学, 2016. |
17 | XIONG H F, LIN S, GOETZE J, et al. Thermally stable and regenerable platinum-tin clusters for propane dehydrogenation prepared by atom trapping on ceria[J]. Angewandte Chemie International Edition, 2017, 56(31): 8986-8991. |
18 | MA F, CHANG Q Y, YIN Q, et al. Rational screening of single-atom-doped ZnO catalysts for propane dehydrogenation from microkinetic analysis[J]. Catalysis Science & Technology, 2020, 10(15): 4938-4951. |
31 | DENG G M. Al2O3 supported Pt-based catalysts for propane dehydrogenation[D]. Dalian: Dalian University of Technology, 2016. |
32 | 李春义, 王国玮. 丙烷/异丁烷脱氢Pt系催化剂的研究进展 Ⅲ.Pt的存在形态、颗粒大小与脱氢性能[J]. 石化技术与应用, 2017, 35(3): 171-176, 184. |
LI Chunyi, WANG Guowei. Pt-based catalysts for propane/isobutane dehydrogenation Ⅲ. Existing state and particle size of Pt[J]. Petrochemical Technology & Application, 2017, 35(3): 171-176, 184. | |
33 | ZHANG H X, ZHANG Y W, ZHOU Y M, et al. Morphology-controlled fabrication of biomorphic alumina-based hierarchical LDH compounds for propane dehydrogenation reaction[J]. New Journal of Chemistry, 2018, 42(1): 103-110. |
34 | SHI L, DENG G M, LI W C, et al. Al2O3 nanosheets rich in pentacoordinate Al3+ ions stabilize Pt-Sn clusters for propane dehydrogenation[J]. Angewandte Chemie International Edition, 2015, 54(47): 13994-13998. |
35 | WANG T, JIANG F, LIU G, et al. Effects of Ga doping on Pt/CeO2-Al2O3 catalysts for propane dehydrogenation[J]. American Institute of Chemical Engineers, 2016, 62(12): 4365-4376. |
36 | YANG M L, ZHU Y A, ZHOU X G, et al. First-principles calculations of propane dehydrogenation over PtSn catalysts[J]. ACS Catalysis, 2012, 2(6): 1247-1258. |
37 | ZHU Y R, AN Z, SONG H Y, et al. Lattice-confined Sn(Ⅳ/Ⅱ) stabilizing raft-like Pt clusters: high selectivity and durability in propane dehydrogenation[J]. ACS Catalysis, 2017, 7(10): 6973-6978. |
38 | HAN Z, LI S, JIANG F, et al. Propane dehydrogenation over Pt-Cu bimetallic catalysts: the nature of coke deposition and the role of copper[J]. Nanoscale, 2014, 6(17): 10000-10008. |
39 | VU B K, SONG M B, AHN I Y, et al. Pt-Sn alloy phases and coke mobility over Pt-Sn/Al2O3 and Pt-Sn/ZnAl2O4 catalysts for propane dehydrogenation[J]. Applied Catalysis A: General, 2011, 400(1/2): 25-33. |
40 | SUN X Y, LIU M J, HUANG Y Y, et al. Electronic interaction between single Pt atom and vacancies on boron nitride nanosheets and its influence on the catalytic performance in the direct dehydrogenation of propane[J]. Chinese Journal of Catalysis, 2019, 40(6): 819-825. |
[1] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[2] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[3] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[4] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[5] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[6] | 徐晨阳, 都健, 张磊. 基于图神经网络的化学反应优劣评价[J]. 化工进展, 2023, 42(S1): 205-212. |
[7] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[8] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[9] | 王谨航, 何勇, 史伶俐, 龙臻, 梁德青. 气体水合物阻聚剂研究进展[J]. 化工进展, 2023, 42(9): 4587-4602. |
[10] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[11] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[12] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[13] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[14] | 史天茜, 石永辉, 武新颖, 张益豪, 秦哲, 赵春霞, 路达. Fe2+对厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2023, 42(9): 5003-5010. |
[15] | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 875
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 550
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |