化工进展 ›› 2021, Vol. 40 ›› Issue (10): 5794-5803.DOI: 10.16085/j.issn.1000-6613.2020-2082
刘柳君(), 胡悦, 李彦, 岳瑞, 胡将军, 朱华, 王旭, 毛旭辉(
)
收稿日期:
2020-10-15
修回日期:
2020-12-07
出版日期:
2021-10-10
发布日期:
2021-10-25
通讯作者:
毛旭辉
作者简介:
刘柳君(1995—),女,硕士研究生,研究方向为环境修复工程。E-mail:基金资助:
LIU Liujun(), HU Yue, LI Yan, YUE Rui, HU Jiangjun, ZHU Hua, WANG Xu, MAO Xuhui(
)
Received:
2020-10-15
Revised:
2020-12-07
Online:
2021-10-10
Published:
2021-10-25
Contact:
MAO Xuhui
摘要:
近年来关于河湖底泥内源污染的原位控制技术受到了广泛的关注和应用。本文针对水体底泥内源污染的释放问题,研究了“电渗-帽封”联合技术的控制效果。电渗处理试验结果表明,电压越高,电渗处理后底泥向上覆水中释放的氨氮量越低,但总磷释放量升高。后续的帽封试验结果表明,使用天然粗河砂效果最好,且帽封厚度越高,材料粒径越小,对污染物释放的控制效果越好。采用20V电渗电压预处理实际底泥,并采用3~5mm粒径的天然粗河砂作为帽封材料,在3cm帽封厚度条件下,对污染物释放的阻控效率可达到66.9%。本研究的结果表明,“电渗-帽封”技术具有良好的底泥污染阻控效果,可以作为一种有效的原位处理方法来阻止底泥内源污染的释放,但其潜在的生态环境效应还需要进一步关注。
中图分类号:
刘柳君, 胡悦, 李彦, 岳瑞, 胡将军, 朱华, 王旭, 毛旭辉. 电渗-帽封联用技术对底泥内源污染释放的阻控效果[J]. 化工进展, 2021, 40(10): 5794-5803.
LIU Liujun, HU Yue, LI Yan, YUE Rui, HU Jiangjun, ZHU Hua, WANG Xu, MAO Xuhui. Performance of electroosmosis plus capping technology on preventing sediment contaminants from release[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5794-5803.
试验编号 | 电压强度/V | 帽封材料 | 帽封厚度/cm | 材料粒径/mm |
---|---|---|---|---|
R1 | 0 | 无 | — | — |
R2 | 8 | 无 | — | — |
R3 | 20 | 无 | — | — |
R4 | 20 | 白色石英砂 | 1 | 3~5 |
R5 | 20 | 贝壳碎粒 | 1 | 3~5 |
R6 | 20 | 天然粗河砂 | 1 | 3~5 |
R7 | 20 | 天然粗河砂 | 2 | 3~5 |
R8 | 20 | 天然粗河砂 | 3 | 3~5 |
R9 | 20 | 天然粗河砂 | 1 | 2~4 |
R10 | 20 | 天然粗河砂 | 1 | 1~2 |
表1 试验条件参数
试验编号 | 电压强度/V | 帽封材料 | 帽封厚度/cm | 材料粒径/mm |
---|---|---|---|---|
R1 | 0 | 无 | — | — |
R2 | 8 | 无 | — | — |
R3 | 20 | 无 | — | — |
R4 | 20 | 白色石英砂 | 1 | 3~5 |
R5 | 20 | 贝壳碎粒 | 1 | 3~5 |
R6 | 20 | 天然粗河砂 | 1 | 3~5 |
R7 | 20 | 天然粗河砂 | 2 | 3~5 |
R8 | 20 | 天然粗河砂 | 3 | 3~5 |
R9 | 20 | 天然粗河砂 | 1 | 2~4 |
R10 | 20 | 天然粗河砂 | 1 | 1~2 |
帽封材料 | 帽封厚度/cm | 材料粒径/mm | 方程式 | 平衡时间x/d | 平衡浓度y/mg·L-1 |
---|---|---|---|---|---|
无 | — | — | y=0.23108x-0.05511xlnx | 24.4 | 1.34 |
天然粗河砂 | 1 | 3~5 | y=0.13266x-0.03243xlnx | 22.0 | 0.71 |
天然粗河砂 | 2 | 3~5 | y=0.10651x-0.02615xlnx | 21.6 | 0.56 |
天然粗河砂 | 3 | 3~5 | y=0.07444x-0.0184xlnx | 21.0 | 0.39 |
天然粗河砂 | 1 | 2~4 | y=0.0901x-0.02208xlnx | 21.8 | 0.48 |
天然粗河砂 | 1 | 1~2 | y=0.05857x-0.0131xlnx | 21.4 | 0.42 |
白色石英砂 | 1 | 3~5 | y=0.1612x-0.04075xlnx | 19.2 | 0.78 |
贝壳碎粒 | 1 | 3~5 | y=0.15405x-0.03838xlnx | 20.4 | 0.78 |
表2 上覆水TP浓度方程
帽封材料 | 帽封厚度/cm | 材料粒径/mm | 方程式 | 平衡时间x/d | 平衡浓度y/mg·L-1 |
---|---|---|---|---|---|
无 | — | — | y=0.23108x-0.05511xlnx | 24.4 | 1.34 |
天然粗河砂 | 1 | 3~5 | y=0.13266x-0.03243xlnx | 22.0 | 0.71 |
天然粗河砂 | 2 | 3~5 | y=0.10651x-0.02615xlnx | 21.6 | 0.56 |
天然粗河砂 | 3 | 3~5 | y=0.07444x-0.0184xlnx | 21.0 | 0.39 |
天然粗河砂 | 1 | 2~4 | y=0.0901x-0.02208xlnx | 21.8 | 0.48 |
天然粗河砂 | 1 | 1~2 | y=0.05857x-0.0131xlnx | 21.4 | 0.42 |
白色石英砂 | 1 | 3~5 | y=0.1612x-0.04075xlnx | 19.2 | 0.78 |
贝壳碎粒 | 1 | 3~5 | y=0.15405x-0.03838xlnx | 20.4 | 0.78 |
1 | 孙远军, 李小平, 黄廷林, 等. 受污染沉积物原位修复技术研究进展[J]. 水处理技术, 2008(1): 14-18. |
SUN Yuanjun, LI Xiaoping, HUANG Tinglin, et al. Progress in remediation in-situ techeniques of polluted sediments[J]. Technology of Water Treatment, 2008(1): 14-18. | |
2 | 颜昌宙, 范成新, 杨建华, 等. 湖泊底泥环保疏浚技术研究展望[J]. 环境污染与防治, 2004(3): 189-192, 243. |
YAN Changzhou, FAN Chengxin, YANG Jianhua, et al. Prospect and progress of the study on environmental dredging technology of lake sediment[J]. Environmental Pollution & Control, 2004(3): 189-192, 243. | |
3 | 陈华林, 陈英旭. 污染底泥修复技术进展[J]. 农业环境科学学报, 2002, 21(2): 179-82. |
CHEN Hualin, CHEN Yingxu. Progresses of remediation techniques for polluted sediment[J]. Journal of Agro-Environment Science, 2002, 21(2): 179-82. | |
4 | BONAGLIA S, RÄMÖ R, MARZOCCHI U, et al. Capping with activated carbon reduces nutrient fluxes, denitrification and meiofauna in contaminated sediments[J]. Water Research, 2018, 148: 515-525. |
5 | 钱丹, 张金鹏, 王宏丽, 等. 河道底泥处理技术成效分析[J]. 水利科学与寒区工程, 2018, 1(7): 46-48. |
QIAN Dan, ZHANG Jinpeng, WANG Hongli, et al. Analysis on the effect of river sediment treatment technology[J]. Hydro Science and Cold Zone Engineering, 2018, 1(7): 46-48. | |
6 | LI Weiping, ZHANG Shaokang, ZHANG Lieyu, et al. In-situ remediation of sediment by calcium nitrate combined with composite microorganisms under low-DO regulation[J]. The Science of the Total Environment, 2019, 697: 134109 |
7 | ZHOU Jing, LI Dapeng, ZHAO Zhehao, et al. Phosphorus immobilization by the surface sediments under the capping with new calcium peroxide material[J]. Journal of Cleaner Production, 2020, 247: 119135. |
8 | 王瑞宁, 王淼, 衣萌萌, 等. 富营养化水体底泥污染状况及修复技术研究进展[J]. 现代农业科技, 2020(1): 169-172. |
WANG Ruining, WANG Miao, YI Mengmeng, et al. Research progress on pollution status of sediment in eutrophicated water and its remediation technology[J]. Modern Agricultural Science and Technology, 2020(1): 169-172. | |
9 | YAN Fei, REIBLE D. PAH degradation and redox control in an electrode enhanced sediment cap[J]. Journal of Chemical Technology & Biotechnology, 2012, 87(9): 1222-1228. |
10 | AREVALO E, KELLER A, STICHNOTHE H, et al. Optimisation of the operation of an electrochemical process to treat TBT-contaminated sediments on a pilot scale[J]. Clean: Soil, Air, Water, 2010, 32(6): 401-410. |
11 | CAPPELLO S, VIGGI C C, YAKIMOV M, et al. Combining electrokinetic transport and bioremediation for enhanced removal of crude oil from contaminated marine sediments: results of a long-term, mesocosm-scale experiment[J]. Water Research, 2019, 157: 381-395. |
12 | CHUN C L, PAVNE R B, SOWERS K R, et al. Electrical stimulation of microbial PCB degradation in sediment[J]. Water Research, 2013, 47(1): 141-152. |
13 | LI Henan, TIAN Yan, QU Youpeng, et al. A pilot-scale benthic microbial electrochemical system (BMES) for enhanced organic removal in sediment restoration[J]. Scientific Reports, 2017, 7: 39802. |
14 | LI Wenwei, YU Hanqing. Stimulating sediment bioremediation with benthic microbial fuel cells[J]. Biotechnology Advances, 2015, 33(1): 1-12. |
15 | STICHNOTHE H, CALMANO W, AREVALO E, et al. TBT-contaminated sediments: treatment in a pilot scale[J]. Journal of Soils and Sediments, 2005, 5(1): 21-29. |
16 | SUN Mei, YAN Fei, ZHANG Ruiling, et al. Redox control and hydrogen production in sediment caps using carbon cloth electrodes[J]. Environmental Science & Technology, 2010, 44(21): 8209-8215. |
17 | XU P, WANG H P, WANG Xu, et al. Impacts of bioturbation from tubificidae on the electrochemical performance and microbial community of sediment microbial fuel cells[J]. Applied Ecology and Environmental Research, 2019, 17(4): 9247-9261. |
18 | 李瑛, 龚晓南, 焦丹, 等. 软黏土二维电渗固结性状的试验研究[J]. 岩石力学与工程学报, 2009, 28(S2): 4034-4039. |
LI Ying, GONG Xiaonan, JIAO Dan, et al. Experimental study on two-dimensional electro-osmotic consolidation of soft clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S2): 4034-4039. | |
19 | LIU Xiaoyan, Boxue LÜ, LIU Guan, et al. Affordable polymer-carbon composite electrodes for electroosmotic dehydration and electro-Fenton processes[J]. Industrial Engineering Chemistry Research, 2019, 58: 19917-19925. |
20 | 李洁. 改性黏土矿物对沉积物磷的原位钝化/掩蔽技术研究[D]. 天津: 天津大学, 2014. |
LI Jie. The research of modified clay minerals in the application of in situ coagulation and sedimentation technology[D]. Tianjin: Tianjin University, 2014. | |
21 | LIN Jianwei, ZHAO Yuying, ZHAN Yanhui, et al. Control of internal phosphorus release from sediments using magnetic lanthanum/iron-modified bentonite as active capping material[J]. Environmental Pollution, 2020, 264: 114809. |
22 | SCHAANNING M, BREYHOLTZ B, SKEI J. Experimental results on effects of capping on fluxes of persistent organic pollutants (POPs) from historically contaminated sediments[J]. Marine Chemistry, 2006, 102(1/2): 46-59. |
23 | 刘杰, 郑西来, 陈蕾, 等. 水库沉积物氮磷释放通量及释放规律研究[J]. 水利学报, 2012, 43(3): 339-343. |
LIU Jie, ZHENG Xilai, CHEN Lei, et al. Study on flux and release law of nitrogen and phosphorus of sediment in reservoir[J]. Journal of Hydraulic Engineering, 2012, 43(3): 339-343. | |
24 | EEK E, GODOY O, AAGAARD P, et al. Experimental determination of efficiency of capping materials during consolidation of metal-contaminated dredged material[J]. Chemosphere, 2007, 69(5): 719-728. |
25 | GARCIA-SEGURA S, OCON J D, CHONG Mengnan. Electrochemical oxidation remediation of real wastewater effluents—A review[J]. Process Safety and Environmental Protection, 2018, 113: 48-67. |
26 | 蒋沁芮, 杨暖, 吴亭亭, 等. 生物电化学脱氮技术研究进展[J]. 应用与环境生物学报, 2018, 24(2): 408-414. |
JIANG Qinrui, YANG Nuan, WU Tingting, et al. Nitrogen removal from wastewater using the bioelectrochemical technology: a review[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(2): 408-414. | |
27 | 赖江钿, 程明双, 余光伟, 等. 利用电动修复技术原位氧化去除黑臭底泥还原性污染物的室内模拟试验[J]. 环境工程学报, 2020, 14(7): 1779-1788. |
LAI Jiangtian, CHENG Mingshuang, YU Guangwei, et al. Indoor simulation experiment of in-situ oxidation removing the reductive pollutants in black-odorous river sediment with electrokinetic remediation[J]. Chinese Journal of Environmental Engineering, 2020, 14(7): 1779-1788. | |
28 | 夏蕾, 刘国, 陈春梅, 等. 稳定剂增强的土壤原位覆盖抑制河流底泥氮磷释放研究[J]. 环境工程, 2016, 34(9): 114-118. |
XIA Lei, LIU Guo, CHEN Chunmei, et al. Efficiency of in-situ capping with stabilizers-added soil on nitrogen and phosphorus release control in river sediment[J]. Environmental Engineering, 2016, 34(9): 114-118. | |
29 | MONTIGNY C, PRAIRIE Y T. The relative importance of biological and chemical processes in the release of phosphorus from a highly organic sediment[J]. Hydrobiologia, 1993, 253(1/2/3): 141-150. |
30 | HYUN Seunghun, JAFVERT C T, LEE L S, et al. Laboratory studies to characterize the efficacy of sand capping a coal tar-contaminated sediment[J]. Chemosphere, 2006, 63(10): 1621-1631. |
31 | KIM Geonha, JEONG Woohyeok, CHOI Seunghee, et al. Sand capping for controlling phosphorus release from lake sediments[J]. Journal of the Korean Society of Civil Engineers B, 2007, 28(4): 381-389. |
32 | LAMPERT D J, SARCHET W V, REIBLE D D. Assessing the effectiveness of thin-layer sand caps for contaminated sediment management through passive sampling[J]. Environmental Science & Technology, 2011, 45(19): 8437-8443. |
33 | 张岳, 王佳, 刘嘉裕, 等. 富营养水体沉积物磷素释放机理及控制技术研究进展[J]. 杭州师范大学学报(自然科学版), 2014, 13(1): 53-59. |
ZHANG Yue, WANG Jia, LIU Jiayu, et al. Study on phosphorus release mechanism in sediments of eutrophic water and the controlling technology[J]. Journal of Hangzhou Normal University (Natural Science Edition), 2014, 13(1): 53-59. | |
34 | JIAO Yang, XU Lei, LI Qingman, et al. Thin-layer fine-sand capping of polluted sediments decreases nutrients in overlying water of Wuhan Donghu Lake in China[J]. Environmental Science and Pollution Research, 2020, 27(3): 7156-7165. |
35 | GO J, LAMPERT D J, STEGEMANN J A, et al. Predicting contaminant fate and transport in sediment caps: mathematical modelling approaches[J]. Applied Geochemistry, 2009, 24(7): 1347-1353. |
[1] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[2] | 王敏, 毛玉红, 陈超, 白丹. 水处理工艺中铝盐水解物的毒性、形态及控制研究进展[J]. 化工进展, 2023, 42(S1): 479-488. |
[3] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[4] | 张婷婷, 左旭乾, 田玲娣, 王世猛. 化工园区挥发性有机物排放清单及因子库构建方法[J]. 化工进展, 2023, 42(S1): 549-557. |
[5] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[6] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[7] | 吕杰, 黄冲, 冯自平, 胡亚飞, 宋文吉. 基于余热回收的燃气热泵性能及控制系统[J]. 化工进展, 2023, 42(8): 4182-4192. |
[8] | 刘卫孝, 刘洋, 高福磊, 汪伟, 汪营磊. 微反应器在含能材料合成与品质提升中的应用[J]. 化工进展, 2023, 42(7): 3349-3364. |
[9] | 王保文, 刘同庆, 张港, 李炜光, 林德顺, 王梦家, 马晶晶. CuFe2O4改性脱硫渣氧载体与褐煤的反应特性[J]. 化工进展, 2023, 42(6): 2884-2894. |
[10] | 王科菊, 赵成, 胡晓玫, 云军阁, 魏凝涵, 姜雪迎, 邹昀, 陈志航. 金属氧化物低温催化氧化VOCs的研究进展[J]. 化工进展, 2023, 42(5): 2402-2412. |
[11] | 任重远, 何金龙, 袁清. 分子筛膜晶间缺陷控制与修复技术研究进展[J]. 化工进展, 2023, 42(5): 2454-2463. |
[12] | 孙鲁芹, 卢会霞, 王建友. 电渗析/超滤内在耦合过程分离蛋清中溶菌酶[J]. 化工进展, 2023, 42(5): 2262-2271. |
[13] | 朱添宇, 孙琳, 任超, 罗雄麟. 基于全周期持续节能的换热网络滑动窗口分析与裕量缓释优化控制[J]. 化工进展, 2023, 42(3): 1195-1205. |
[14] | 张孟旭, 王红琴, 李金, 安霓虹, 戴云生, 钱颖, 沈亚峰. PtSn/MgAl2O4-sheet催化剂的制备及其PDH反应性能[J]. 化工进展, 2023, 42(3): 1365-1372. |
[15] | 潘思睿, 邓文义, 苏亚欣. 电路探针测量污泥液膜厚度方法验证及应用[J]. 化工进展, 2023, 42(10): 5538-5547. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 250
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |