化工进展 ›› 2020, Vol. 39 ›› Issue (S2): 142-151.DOI: 10.16085/j.issn.1000-6613.2020-0286
收稿日期:
2020-03-02
出版日期:
2020-11-20
发布日期:
2020-11-17
通讯作者:
白红存
作者简介:
王强(1994—),男,硕士研究生,研究方向为煤化工。E-mail:基金资助:
Qiang WANG(), Ning MAO, Yan YANG, Jinpeng ZHANG, Hongcun BAI()
Received:
2020-03-02
Online:
2020-11-20
Published:
2020-11-17
Contact:
Hongcun BAI
摘要:
使用密度梯度离心法对宁夏庆华煤的显微组分进行分离,获得煤的镜质组和惰质组。通过元素分析、X射线光电子能谱(XPS)、固体13C核磁共振(13C NMR)技术、傅里叶变换红外光谱(FTIR)和X射线衍射(XRD)技术等表征手段对不同显微组分进行物性表征。进一步基于统计平均的分子结构近似结合分子模拟计算,确定庆华煤镜质组和惰质组显微组分的分子结构可分别表示为C269H196N4O13S和C255H179N3O14S。通过FTIR光谱与13C NMR光谱验证,从而实现了不同显微组分的分子结构描述。对两种显微组分的分子模型和结构参数进行了系统对比分析,发现镜质组的芳碳百分数为51.95,惰质组的芳碳百分数为62.16。镜质组模型中芳碳结构数目较少,脂肪碳结构丰富,不饱和度较小,还原度最大。惰质组模型中芳碳结构数量最大,脂肪碳结构数目少,不饱和度最大,煤化程度高。镜质组在原煤中含量高,是原煤的主要组成。惰质组的含量少且大分子结构缩合度高,分布在镜质组构成的基体中。
中图分类号:
王强, 毛宁, 杨妍, 张金鹏, 白红存. 宁夏庆华煤镜质组和惰质组显微组分的分子结构及对比分析[J]. 化工进展, 2020, 39(S2): 142-151.
Qiang WANG, Ning MAO, Yan YANG, Jinpeng ZHANG, Hongcun BAI. Molecular structures and comparative analysis of macerals of vitrinite and inertinite for Qinghua coal, Ningxia[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 142-151.
样品 | 工业分析(质量分数)/% | 岩相分析(质量分数)/% | Rmax | ||||||
---|---|---|---|---|---|---|---|---|---|
Mad① | Aad② | Vdaf③ | FCd④ | 镜质组 | 惰质组 | 壳质组 | 矿物质 | ||
QH | 0.86 | 10.81 | 19.70 | 71.62 | 88.4 | 7.8 | 0.0 | 3.8 | 1.38% |
表1 QH煤的工业分析和岩相分析
样品 | 工业分析(质量分数)/% | 岩相分析(质量分数)/% | Rmax | ||||||
---|---|---|---|---|---|---|---|---|---|
Mad① | Aad② | Vdaf③ | FCd④ | 镜质组 | 惰质组 | 壳质组 | 矿物质 | ||
QH | 0.86 | 10.81 | 19.70 | 71.62 | 88.4 | 7.8 | 0.0 | 3.8 | 1.38% |
样品 | 元素分析(质量分数,干燥无灰基)/% | 原子比 | Aad/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | O | N | S | H/C | O/C | N/C | S/C | ||
镜质组 | 86.62 | 5.25 | 5.47 | 1.59 | 1.07 | 0.7273 | 0.0474 | 0.0157 | 0.0046 | 4.10 |
惰质组 | 86.24 | 5.02 | 6.49 | 1.37 | 0.88 | 0.6985 | 0.0564 | 0.0136 | 0.0038 | 7.58 |
表2 QH煤两种显微组分的元素分析、原子比和灰分
样品 | 元素分析(质量分数,干燥无灰基)/% | 原子比 | Aad/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | O | N | S | H/C | O/C | N/C | S/C | ||
镜质组 | 86.62 | 5.25 | 5.47 | 1.59 | 1.07 | 0.7273 | 0.0474 | 0.0157 | 0.0046 | 4.10 |
惰质组 | 86.24 | 5.02 | 6.49 | 1.37 | 0.88 | 0.6985 | 0.0564 | 0.0136 | 0.0038 | 7.58 |
样品 | fa① | fal⑨ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
镜质组 | 64.97 | 13.00 | 51.95 | 34.44 | 17.51 | 1.24 | 7.30 | 8.97 | 35.03 | 10.91 | 19.19 | 4.93 |
惰质组 | 76.43 | 14.27 | 62.16 | 44.75 | 17.41 | 0.87 | 4.30 | 12.24 | 23.57 | 9.05 | 9.61 | 4.91 |
表3 QH煤两种显微组分的结构参数百分数
样品 | fa① | fal⑨ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
镜质组 | 64.97 | 13.00 | 51.95 | 34.44 | 17.51 | 1.24 | 7.30 | 8.97 | 35.03 | 10.91 | 19.19 | 4.93 |
惰质组 | 76.43 | 14.27 | 62.16 | 44.75 | 17.41 | 0.87 | 4.30 | 12.24 | 23.57 | 9.05 | 9.61 | 4.91 |
芳环类型 | 芳环数目 | 芳环类型 | 芳环数目 | ||
---|---|---|---|---|---|
镜质组 | 惰质组 | 镜质组 | 惰质组 | ||
3 | 2 | 2 | 1 | ||
1 | 1 | 1 | 1 | ||
1 | 1 | 1 | 1 | ||
3 | 6 | 1 | 0 | ||
3 | 5 | 0 | 1 | ||
2 | 2 |
表4 QH煤两种显微组分中芳环的类型及数量
芳环类型 | 芳环数目 | 芳环类型 | 芳环数目 | ||
---|---|---|---|---|---|
镜质组 | 惰质组 | 镜质组 | 惰质组 | ||
3 | 2 | 2 | 1 | ||
1 | 1 | 1 | 1 | ||
1 | 1 | 1 | 1 | ||
3 | 6 | 1 | 0 | ||
3 | 5 | 0 | 1 | ||
2 | 2 |
样品 | 分子式 | 分子质量/g·mol-1 | 芳碳Car/个 | 脂肪碳Ca/个 | XBP | δ | nCB | naT | nC | naT/nC | B/% | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
镜质组 | C269H196O13N4S | 3720 | 173 | 96 | 0.173 | 51.95 | 9.27 | 17.64 | 13.01 | 7.23 | 1.80 | 28.89 |
惰质组 | C255H179O14N3S | 3536 | 195 | 60 | 0.20 | 62.16 | 9.41 | 17.51 | 12.81 | 7.21 | 1.78 | 27.34 |
表5 QH煤两种显微组分的主要结构指数
样品 | 分子式 | 分子质量/g·mol-1 | 芳碳Car/个 | 脂肪碳Ca/个 | XBP | δ | nCB | naT | nC | naT/nC | B/% | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
镜质组 | C269H196O13N4S | 3720 | 173 | 96 | 0.173 | 51.95 | 9.27 | 17.64 | 13.01 | 7.23 | 1.80 | 28.89 |
惰质组 | C255H179O14N3S | 3536 | 195 | 60 | 0.20 | 62.16 | 9.41 | 17.51 | 12.81 | 7.21 | 1.78 | 27.34 |
1 | WANG Keying, WU Meng, SUN Yongping, et al. Resource abundance, industrial structure, and regional carbon emissions efficiency in China[J]. Resources Policy, 2019, 60: 203-214. |
2 | SONG Malin, WANG Jianlin, ZHAO Jiajia. Coal endowment, resource curse, and high coal-consuming industries location: analysis based on large-scale data[J]. Resources, Conservation and Recycling, 2018, 129: 333-344. |
3 | ZHANG Lei, HE Chaonan, YANG Anquan, et al. Modeling and implication of coal physical input-output table in China—based on clean coal concept[J]. Resources, Conservation and Recycling, 2018, 129: 355-365. |
4 | MATHEWS Jonathan P, CHAFFEE Alan L. The molecular representations of coal—a review[J]. Fuel, 2012, 96: 1-14. |
5 | 崔馨, 严煌, 赵培涛. 煤分子结构模型构建及分析方法综述[J]. 中国矿业大学学报, 2019, 48(4): 704-717. |
CUI Xin, YAN Hang, ZHAO Peitao. A review on the model construction and analytical methods of coal molecular structure[J]. Journal of China University of Mining & Technology, 2019, 48(4): 704-717. | |
6 | MATHEWS Jonathan P, DUIN Adri C T VAN, CHAFFEE Alan L. The utility of coal molecular models[J]. Fuel Processing Technology, 2011, 92(4): 718-728. |
7 | LIU Jiaxun, JIANG Yuanzhen, YAO Wang, et al. Molecular characterization of Henan anthracite coal[J]. Energy & Fuels, 2019, 33(7): 6215-6225. |
8 | WANG Jieping, LI Guangyue, GUO Rui, et al. Theoretical and experimental insight into coal structure: establishing a chemical model for Yuzhou lignite[J]. Energy & Fuels, 2016, 31(1): 124-132. |
9 | LIN Hualin, LI Kejian, ZHANG Xuwen, et al. Structure characterization and model construction of Indonesian brown coal[J]. Energy & Fuels, 2015, 30(5): 3809-3814. |
10 | 柏静儒, 陈嘉彬, 李坤, 等. 印尼油砂沥青组成及化学结构分析[J]. 化工进展, 2019, 38(7): 3117-3125. |
BAI Jingru, CHEN Jiabin, LI Kun, et al. Analysis of composition and chemical structure of Indonesian oil sands bitumen[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3117-3125. | |
11 | YAN Guochao, REN Gang, BAI Longjian, et al. Molecular model construction and evaluation of Jincheng anthracite[J]. ACS Omega, 2020, 5(19): 10663-10670. |
12 | FAN Zheyong, CHEN Wei, VIERIMAA Ville, et al. Efficient molecular dynamics simulations with many-body potentials on graphics processing units[J]. Computer Physics Communications, 2017, 218: 10-16. |
13 | Fidel CASTRO-MARCANO, LOBODIN Vladislav V, RODGERS Ryan P, et al. A molecular model for Illinois No. 6 argonne premium coal: moving toward capturing the continuum structure[J]. Fuel, 2012, 95: 35-49. |
14 | SALMON Elodie, DUIN Adri C VAN.T, LORANT François,et al. Early maturation processes in coal. Part 2: reactive dynamics simulations using the ReaxFF reactive force field on Morwell brown coal structures[J]. Organic Geochemistry, 2009, 40(12): 1195-1209. |
15 | CHEN Bo, DIAO Zhijun, LU Haiyun. Using the ReaxFF reactive force field for molecular dynamics simulations of the spontaneous combustion of lignite with the hatcher lignite model[J]. Fuel, 2014, 116: 7-13. |
16 | ZHENG Mo, LI Xiaoxia, WANG Meijun, et al. Dynamic profiles of tar products during Naomaohu coal pyrolysis revealed by large-scale reactive molecular dynamic simulation[J]. Fuel, 2019, 253: 910-920. |
17 | XU Fang, PAN Shuo, LIU Chunguang, et al. Construction and evaluation of chemical structure model of Huolinhe lignite using molecular modeling[J]. RSC Advances, 2017, 7(66): 41512-41519. |
18 | XU Fang, LIU Hui, WANG Qing, et al. Study of non-isothermal pyrolysis mechanism of lignite using ReaxFF molecular dynamics simulations[J]. Fuel, 2019, 256: 115884. |
19 | HONG Dikun, GUO Xin. Molecular dynamics simulations of Zhundong coal pyrolysis using reactive force field[J]. Fuel, 2017, 210: 58-66. |
20 | GAO Mingjie, LI Xiaoxia, GUO Li. Pyrolysis simulations of Fugu coal by large-scale ReaxFF molecular dynamics[J]. Fuel Processing Technology, 2018, 178: 197-205. |
21 | GAO Mingjie, LI Xiaoxia, REN Chunxing, et al. Construction of a multicomponent molecular model of Fugu coal for ReaxFF-MD pyrolysis simulation[J]. Energy & Fuels, 2019, 33(4): 2848-2858. |
22 | 周星宇, 曾凡桂, 相建华, 等. 马脊梁镜煤有机质大分子模型构建及分子模拟[J]. 化工学报, 2019, 70: 1-14. |
ZHOU Xingyu, ZENG Fangui, XIANG Jianhua, et al. Macromolecular model construction and molecular simulation of organic matter in Majiliang vitrain[J]. CIESC Journal, 2019, 70: 1-14. | |
23 | FENG Wei, LI Zhuangmei, GAO Hongfeng, et al. Understanding the molecular structure of HSW coal at atomic level: a comprehensive characterization from combined experimental and computational study[J]. Green Energy & Environment, 2020, doi: 10.1016/j.gee.2020.03.013. |
24 | DUIN Adri CT VAN, DASGUPTA Siddharth, LORANT Francois, et al. ReaxFF: a reactive force field for hydrocarbons[J]. The Journal of Physical Chemistry A, 2001, 105(41): 9396-9409. |
25 | CHENOWETH Kimberly, DUIN Adri CT VAN, GODDARD William A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation[J]. The Journal of Physical Chemistry A, 2008, 112(5): 1040-1053. |
26 | DUIN Adri C T VAN, GODDARD William A, SCHOOT H VAN, et al. ReaxFF 2017[C]. SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, . |
27 | FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09[C]. Gaussian, Inc, Pittsburgh P A, 2009. |
28 | 李壮楣, 王艳美, 李平, 等. 宁东红石湾煤大分子模型构建及量子化学计算[J]. 化工学报, 2018, 69(5): 2208-2216. |
LI Zhuangmei, WANG Yanmei, LI Ping, et al. Macromolecule model construction and quantum chemical calculation of Ningdong Hongshiwan coal[J]. CIESC Journal, 2018, 69(5): 2208-2216. | |
29 | 久利马里耶夫. 煤结构-化学指数分类与应用[M]. 聂书岭, 马凤云, 译. 北京: 化学工业出版社, 2013: 33. |
Giulimareyev. Coal structure-chemical index classification and application[M]. NIE Shuling, MA Fengyun, trans. Beijing: Chemical Industry Press, 2013: 33. | |
30 | FENG Li, ZHAO Guangyao, ZHAO Yingya, et al. Construction of the molecular structure model of the Shengli lignite using TG-GC/MS and FTIR spectrometry data[J]. Fuel, 2017, 203: 924-931. |
31 | LIU Xianfeng, SONG Dazhao, HE Xueqiu, et al. Insight into the macromolecular structural differences between hard coal and deformed soft coal[J]. Fuel, 2019, 245: 188-197. |
32 | HE Xueqiu, LIU Xianfeng, NIE Baisheng, et al. FTIR and Raman spectroscopy characterization of functional groups in various rank coals[J]. Fuel, 2017, 206: 555-563. |
33 | 段春婷, 刘均庆, 徐文强, 等. 三种不同原料中间相沥青的性质表征[J]. 化工进展, 2018, 37(1): 189-194. |
DUAN Chunting, LIU Junqing, XU Wenqiang, et al. Characterization of mesophase pitches made from three different raw materials[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 189-194. | |
34 | KELEMEN S R, AFEWORKI M, GORBATY M L,et al. Characterization of organically bound oxygen forms in lignites, peats, and pyrolyzed peats by X-ray photoelectron spectroscopy (XPS) and solid-state 13C NMR methods[J]. Energy & Fuels, 2002, 16(6): 1450-1462. |
35 | LI Zhanku, WEI Xianyong, YAN Honglei, et al. Insight into the structural features of Zhaotong lignite using multiple techniques[J]. Fuel, 2015, 153: 176-182. |
36 | WANG Yugao, WEI Xianyong, WANG Shengkang, et al. Structural evaluation of Xiaolongtan lignite by direct characterization and pyrolytic analysis[J]. Fuel Processing Technology, 2016, 144: 248-254. |
37 | 杜鸿飞, 段钰锋, 佘敏. 高硫石油焦热解过程及硫形态的变化特性[J]. 化工进展, 2016, 35(8): 2420-2425. |
DU Hongfei, DUAN Yufeng, SHE Min. Research on pyrolysis process of high sulfur petroleum coke and the changes of sulfur species[J]. Chemical Industry and Engineering Progress, 2016, 35(8): 2420-2425. | |
38 | SUPALUKNARI S, LARKINS F P, REDLICH P, et al. Determination of aromaticities and other structural features of Australian coals using solid state 13C NMR and FTIR spectroscopies[J]. Fuel Processing Technology, 1989, 23(1): 47-61. |
39 | 王擎, 王智超, 贾春霞, 等. 基于固体 13C 核磁共振技术对油砂沥青质结构的研究[J]. 化工进展, 2014, 33(6): 1392-1396. |
WANG Qiang, WANG Zhichao, JIA Chunxia, et al. Study on structural features of oil sands with solid state 13C NMR[J]. Chemical Industry and Engineering Progress, 2014, 33(6): 1392-1396. | |
40 | CUI Xin, YAN Huang, ZHAO Peitao, et al. Modeling of molecular and properties of anthracite base on structural accuracy identification methods[J]. Journal of Molecular Structure, 2019, 1183: 313-323. |
41 | 谢克昌. 煤的结构与反应[M]. 北京: 科学出版社, 2002: 88. |
XIE Kechang. Coal structure and its reactivity[M]. Beijing: Science Press, 2002: 88. | |
42 | 冯炜, 高红凤, 王贵, 等. 枣泉煤分子模型构建及热解的分子模拟[J]. 化工学报, 2019, 70(4): 1522-1531. |
FENG Wei, GAO Hongfeng, WANG Gui, et al. Molecular model and pyrolysis simulation of Zaoquan coal[J]. CIESC Journal, 2019, 70(4): 1522-1531. | |
43 | SHI Kaiyi, GUI Xiahui, TAO Xiuxiang, et al. Macromolecular structural unit construction of Fushun nitric-acid-oxidized coal[J]. Energy & Fuels, 2015, 29(6): 3566-3572. |
44 | XIANG Jianhua, ZENG Fangui, LI Bin, et al. Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation[J]. Journal of Fuel Chemistry and Technology, 2013, 41(4): 391-400. |
45 | XIANG Jianhua, ZENG Fangui, LIANG Huzhen, et al. Model construction of the macromolecular structure of Yanzhou coal and its molecular simulation[J]. Journal of Fuel Chemistry and Technology, 2011, 39(7): 481-488. |
46 | MENG Junqing, ZHONG Ruquan, LI Shichao, et al. Molecular model construction and study of gas adsorption of Zhaozhuang coal[J]. Energy & Fuels, 2018, 32(9): 9727-9737. |
47 | WANG Jie, HE Yaqun, LI Hong, et al. The molecular structure of Inner Mongolia lignite utilizing XRD, solid state 13C NMR, HRTEM and XPS techniques[J]. Fuel, 2017, 203: 764-773. |
[1] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[2] | 徐晨阳, 都健, 张磊. 基于图神经网络的化学反应优劣评价[J]. 化工进展, 2023, 42(S1): 205-212. |
[3] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[4] | 汪鹏, 张洋, 范兵强, 何登波, 申长帅, 张贺东, 郑诗礼, 邹兴. 高碳铬铁盐酸浸出过程工艺及动力学[J]. 化工进展, 2023, 42(S1): 510-517. |
[5] | 刘阳, 王云刚, 修浩然, 邹立, 白彦渊. 基于动力学分析的核桃壳最佳炭化工艺[J]. 化工进展, 2023, 42(S1): 94-103. |
[6] | 陈林, 徐培渊, 张晓慧, 陈杰, 徐振军, 陈嘉祥, 密晓光, 冯永昌, 梅德清. 液化天然气绕管式换热器壳侧混合工质流动及传热特性[J]. 化工进展, 2023, 42(9): 4496-4503. |
[7] | 董佳宇, 王斯民. 超声强化对二甲苯结晶特性及调控机理实验[J]. 化工进展, 2023, 42(9): 4504-4513. |
[8] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[9] | 张帆, 陶少辉, 陈玉石, 项曙光. 基于改进恒热传输模型的精馏模拟初始化[J]. 化工进展, 2023, 42(9): 4550-4558. |
[10] | 赖诗妮, 江丽霞, 李军, 黄宏宇, 小林敬幸. 含碳掺氨燃料的研究进展[J]. 化工进展, 2023, 42(9): 4603-4615. |
[11] | 朱杰, 金晶, 丁正浩, 杨会盼, 侯封校. 化学链气化中准东煤灰对CaSO4载氧体改性及其作用机理[J]. 化工进展, 2023, 42(9): 4628-4635. |
[12] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[13] | 宋伟涛, 宋慧平, 范朕连, 樊飙, 薛芳斌. 粉煤灰在防腐涂料中的研究进展[J]. 化工进展, 2023, 42(9): 4894-4904. |
[14] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[15] | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |